BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35397119)

  • 1. Bonding character of intermediates in on-surface Ullmann reactions revealed with energy decomposition analysis.
    Luy JN; Henkel P; Grigjanis D; Jung J; Mollenhauer D; Tonner-Zech R
    J Comput Chem; 2023 Jan; 44(3):179-189. PubMed ID: 35397119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A periodic energy decomposition analysis method for the investigation of chemical bonding in extended systems.
    Raupach M; Tonner R
    J Chem Phys; 2015 May; 142(19):194105. PubMed ID: 26001445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging Successive Intermediate States of the On-Surface Ullmann Reaction on Cu(111): Role of the Metal Coordination.
    Zint S; Ebeling D; Schlöder T; Ahles S; Mollenhauer D; Wegner HA; Schirmeisen A
    ACS Nano; 2017 Apr; 11(4):4183-4190. PubMed ID: 28346826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of Organometallic Intermediate States in On-Surface Ullmann Couplings.
    Barton D; Gao HY; Held PA; Studer A; Fuchs H; Doltsinis NL; Neugebauer J
    Chemistry; 2017 May; 23(25):6190-6197. PubMed ID: 28211966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new look at the ylidic bond in phosphorus ylides and related compounds: energy decomposition analysis combined with a domain-averaged fermi hole analysis.
    Calhorda MJ; Krapp A; Frenking G
    J Phys Chem A; 2007 Apr; 111(15):2859-69. PubMed ID: 17388399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adatoms in the Surface-Confined Ullmann Coupling of Phenyl Groups.
    Zhang Z; Perepichka DF; Khaliullin RZ
    J Phys Chem Lett; 2021 Nov; 12(45):11061-11069. PubMed ID: 34747624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ullmann-Like Covalent Bond Coupling without Participation of Metal Atoms.
    Zhang T; Li R; Hao X; Zhang Q; Yang H; Hou Y; Hou B; Jia L; Jiang K; Zhang Y; Wu X; Zhuang X; Liu L; Yao Y; Guo W; Wang Y
    ACS Nano; 2023 Mar; 17(5):4387-4395. PubMed ID: 36802507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds.
    Kovács A; Esterhuysen C; Frenking G
    Chemistry; 2005 Mar; 11(6):1813-25. PubMed ID: 15672434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bonding Motifs in Metal-Organic Compounds on Surfaces.
    Queck F; Krejčí O; Scheuerer P; Bolland F; Otyepka M; Jelínek P; Repp J
    J Am Chem Soc; 2018 Oct; 140(40):12884-12889. PubMed ID: 30226773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkyne-Functionalized Cyclooctyne on Si(001): Reactivity Studies and Surface Bonding from an Energy Decomposition Analysis Perspective.
    Pieck F; Tonner-Zech R
    Molecules; 2021 Nov; 26(21):. PubMed ID: 34771062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface functionalization with nonalternant aromatic compounds: a computational study of azulene and naphthalene on Si(001).
    Kreuter F; Tonner R
    J Phys Condens Matter; 2021 Aug; 33(44):. PubMed ID: 34352730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical analysis of bonding in N-heterocyclic carbene-rhodium complexes.
    Srebro M; Michalak A
    Inorg Chem; 2009 Jun; 48(12):5361-9. PubMed ID: 19400577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relevance of Orbital Interactions and Pauli Repulsion in the Metal-Metal Bond of Coinage Metals.
    Brands MB; Nitsch J; Guerra CF
    Inorg Chem; 2018 Mar; 57(5):2603-2608. PubMed ID: 29431436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution Atomic Force Microscopy.
    Kawai S; Sadeghi A; Okamoto T; Mitsui C; Pawlak R; Meier T; Takeya J; Goedecker S; Meyer E
    Small; 2016 Oct; 12(38):5303-5311. PubMed ID: 27531252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear M[triple bond]E-Me versus bent M-E-Me: bonding analysis in heavier metal-ylidyne complexes [(Cp)(CO)2M[triple bond]EMe] and metallo-ylidenes [(Cp)(CO)3M-EMe] (M = Cr, Mo, W; E = Si, Ge, Sn, Pb).
    Pandey KK; Lledós A
    Inorg Chem; 2009 Apr; 48(7):2748-59. PubMed ID: 19256519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Decomposition Analysis for Metal Surface-Adsorbate Interactions by Block Localized Wave Functions.
    Staub R; Iannuzzi M; Khaliullin RZ; Steinmann SN
    J Chem Theory Comput; 2019 Jan; 15(1):265-275. PubMed ID: 30462497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasiclassical Direct Dynamics Trajectory Simulations of Organometallic Reactions.
    Ess DH
    Acc Chem Res; 2021 Dec; 54(23):4410-4422. PubMed ID: 34761673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the paucity of molecular actinide complexes with unsupported metal-metal bonds: a comparative investigation of the electronic structure and metal-metal bonding in U2X6 (X = Cl, F, OH, NH2, CH3) complexes and d-block analogues.
    Cavigliasso G; Kaltsoyannis N
    Inorg Chem; 2006 Aug; 45(17):6828-39. PubMed ID: 16903739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the Fermi surface in adsorbate-metal interactions: an energy decomposition analysis.
    Philipsen PH; Baerends EJ
    J Phys Chem B; 2006 Jun; 110(25):12470-9. PubMed ID: 16800574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-Surface Synthesis of Multiple Cu Atom-Bridged Organometallic Oligomers.
    Sun K; Sugawara K; Lyalin A; Ishigaki Y; Uosaki K; Custance O; Taketsugu T; Suzuki T; Kawai S
    ACS Nano; 2023 Dec; 17(23):24355-24362. PubMed ID: 38047624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.