These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 35397370)
21. Groundwater and surface-water exchange and resulting nitrate dynamics in the Bogue Phalia basin in northwestern Mississippi. Barlow JR; Coupe RH J Environ Qual; 2012; 41(1):155-69. PubMed ID: 22218184 [TBL] [Abstract][Full Text] [Related]
22. The effect of unsteady streamflow and stream-groundwater interactions on oxygen consumption in a sandy streambed. Galloway J; Fox A; Lewandowski J; Arnon S Sci Rep; 2019 Dec; 9(1):19735. PubMed ID: 31875013 [TBL] [Abstract][Full Text] [Related]
23. Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption. Meghdadi A Water Res; 2018 Sep; 140():364-376. PubMed ID: 29751318 [TBL] [Abstract][Full Text] [Related]
24. Pathways for arsenic from sediments to groundwater to streams: biogeochemical processes in the Inner Coastal Plain, New Jersey, USA. Barringer JL; Mumford A; Young LY; Reilly PA; Bonin JL; Rosman R Water Res; 2010 Nov; 44(19):5532-44. PubMed ID: 20580401 [TBL] [Abstract][Full Text] [Related]
25. Reconceptualizing the hyporheic zone for nonperennial rivers and streams. DelVecchia AG; Shanafield M; Zimmer MA; Busch MH; Krabbenhoft CA; Stubbington R; Kaiser KE; Burrows RM; Hosen J; Datry T; Kampf SK; Zipper SC; Fritz K; Costigan K; Allen DC Freshw Sci; 2022 Apr; 41(2):167-182. PubMed ID: 35846249 [TBL] [Abstract][Full Text] [Related]
26. Lateral and longitudinal variation of hyporheic exchange in a piedmont stream pool. Ryan RJ; Boufadel MC Environ Sci Technol; 2007 Jun; 41(12):4221-6. PubMed ID: 17626416 [TBL] [Abstract][Full Text] [Related]
27. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. Conant B; Cherry JA; Gillham RW J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797 [TBL] [Abstract][Full Text] [Related]
28. River water infiltration enhances denitrification efficiency in riparian groundwater. Trauth N; Musolff A; Knöller K; Kaden US; Keller T; Werban U; Fleckenstein JH Water Res; 2018 Mar; 130():185-199. PubMed ID: 29223089 [TBL] [Abstract][Full Text] [Related]
29. Whole-stream response to nitrate loading in three streams draining agricultural landscapes. Duff JH; Tesoriero AJ; Richardson WB; Strauss EA; Munn MD J Environ Qual; 2008; 37(3):1133-44. PubMed ID: 18453433 [TBL] [Abstract][Full Text] [Related]
30. Hydrobiogechemical interactions in the hyporheic zone of a sulfate-impacted, freshwater stream and riparian wetland ecosystem. Torgeson JM; Rosenfeld CE; Dunshee AJ; Duhn K; Schmitter R; O'Hara PA; Ng GHC; Santelli CM Environ Sci Process Impacts; 2022 Sep; 24(9):1360-1382. PubMed ID: 35661843 [TBL] [Abstract][Full Text] [Related]
32. Effect of Fe(II) on reactivity of heterotrophic denitrifiers in the remediation of nitrate- and Fe(II)-contaminated groundwater. Liu Y; Feng C; Sheng Y; Dong S; Chen N; Hao C Ecotoxicol Environ Saf; 2018 Dec; 166():437-445. PubMed ID: 30292110 [TBL] [Abstract][Full Text] [Related]
33. Specific characteristics of the microbial community in the groundwater fluctuation zone. Shen J; Liu H; Zhou H; Chen R Environ Sci Pollut Res Int; 2022 Oct; 29(50):76066-76077. PubMed ID: 35665458 [TBL] [Abstract][Full Text] [Related]
34. Habitat heterogeneity and associated microbial community structure in a small-scale floodplain hyporheic flow path. Lowell JL; Gordon N; Engstrom D; Stanford JA; Holben WE; Gannon JE Microb Ecol; 2009 Oct; 58(3):611-20. PubMed ID: 19462196 [TBL] [Abstract][Full Text] [Related]
35. Bacterial communities at a groundwater-surface water ecotone: gradual change or abrupt transition points along a contamination gradient? Lehosmaa K; Muotka T; Pirttilä AM; Jaakola I; Rossi PM; Jyväsjärvi J Environ Microbiol; 2021 Nov; 23(11):6694-6706. PubMed ID: 34382316 [TBL] [Abstract][Full Text] [Related]
36. Understanding Microbial Arsenic-Mobilization in Multiple Aquifers: Insight from DNA and RNA Analyses. Xiu W; Ke T; Lloyd JR; Shen J; Bassil NM; Song H; Polya DA; Zhao Y; Guo H Environ Sci Technol; 2021 Nov; 55(22):15181-15195. PubMed ID: 34706533 [TBL] [Abstract][Full Text] [Related]
38. Temporal analysis of the microbial communities in a nitrate-contaminated aquifer and the co-occurrence of anammox, n-damo and nitrous-oxide reducing bacteria. Aguilar-Rangel EJ; Prado BL; Vásquez-Murrieta MS; Los Santos PE; Siebe C; Falcón LI; Santillán J; Alcántara-Hernández RJ J Contam Hydrol; 2020 Oct; 234():103657. PubMed ID: 32777591 [TBL] [Abstract][Full Text] [Related]
39. Vulnerability of streams to legacy nitrate sources. Tesoriero AJ; Duff JH; Saad DA; Spahr NE; Wolock DM Environ Sci Technol; 2013 Apr; 47(8):3623-9. PubMed ID: 23530900 [TBL] [Abstract][Full Text] [Related]
40. Hydrological and hydrochemical behavior of a riparian zone in a high-order flatland stream. Veizaga EA; Ocampo CJ; Rodríguez L Environ Monit Assess; 2018 Dec; 191(1):10. PubMed ID: 30535811 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]