These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35397458)

  • 1. Pathways to community transmission of COVID-19 due to rapid evaporation of respiratory virulets.
    Basak M; Mitra S; Bandyopadhyay D
    J Colloid Interface Sci; 2022 Aug; 619():229-245. PubMed ID: 35397458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling.
    Bahramian A; Mohammadi M; Ahmadi G
    Sci Total Environ; 2023 Feb; 858(Pt 2):159444. PubMed ID: 36252673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How far droplets can move in indoor environments--revisiting the Wells evaporation-falling curve.
    Xie X; Li Y; Chwang AT; Ho PL; Seto WH
    Indoor Air; 2007 Jun; 17(3):211-25. PubMed ID: 17542834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of saliva fluid properties on pathogen transmissibility.
    Reyes J; Fontes D; Bazzi A; Otero M; Ahmed K; Kinzel M
    Sci Rep; 2021 Aug; 11(1):16051. PubMed ID: 34362974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of indoor environmental conditions on airborne transmission and lifetime of sneeze droplets in a confined space: a way to reduce COVID-19 spread.
    Bahramian A
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):44067-44085. PubMed ID: 36680724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peering inside a cough or sneeze to explain enhanced airborne transmission under dry weather.
    Liu K; Allahyari M; Salinas JS; Zgheib N; Balachandar S
    Sci Rep; 2021 May; 11(1):9826. PubMed ID: 33972590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational characterization of the behavior of a saliva droplet in a social environment.
    Ugarte-Anero A; Fernandez-Gamiz U; Portal-Porras K; Zulueta E; Urbina-Garcia O
    Sci Rep; 2022 Apr; 12(1):6405. PubMed ID: 35437309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiology to Disease Transmission of Respiratory Tract Infection: A Narrative Review.
    Singh NK; Kumar N; Singh AK
    Infect Disord Drug Targets; 2021; 21(6):e170721188930. PubMed ID: 33297921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ambient temperature and humidity on droplet lifetime - A perspective of exhalation sneeze droplets with COVID-19 virus transmission.
    Chen LD
    Int J Hyg Environ Health; 2020 Aug; 229():113568. PubMed ID: 32615522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformative Approach To Investigate the Microphysical Factors Influencing Airborne Transmission of Pathogens.
    Otero Fernandez M; Thomas RJ; Oswin H; Haddrell AE; Reid JP
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaporation flow characteristics of airborne sputum droplets with solid fraction: Effects of humidity field evolutions.
    Zeng G; Chen L; Yuan H; Yamamoto A; Maruyama S
    Phys Fluids (1994); 2021 Dec; 33(12):123308. PubMed ID: 35002203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airborne dispersion of droplets during coughing: a physical model of viral transmission.
    Li H; Leong FY; Xu G; Kang CW; Lim KH; Tan BH; Loo CM
    Sci Rep; 2021 Feb; 11(1):4617. PubMed ID: 33633316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental Stability of Enveloped Viruses Is Impacted by Initial Volume and Evaporation Kinetics of Droplets.
    French AJ; Longest AK; Pan J; Vikesland PJ; Duggal NK; Marr LC; Lakdawala SS
    mBio; 2023 Apr; 14(2):e0345222. PubMed ID: 37036343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms controlling the transport and evaporation of human exhaled respiratory droplets containing the severe acute respiratory syndrome coronavirus: a review.
    Norvihoho LK; Yin J; Zhou ZF; Han J; Chen B; Fan LH; Lichtfouse E
    Environ Chem Lett; 2023; 21(3):1701-1727. PubMed ID: 36846189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study.
    Feng Y; Marchal T; Sperry T; Yi H
    J Aerosol Sci; 2020 Sep; 147():105585. PubMed ID: 32427227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breathing, speaking, coughing or sneezing: What drives transmission of SARS-CoV-2?
    Stadnytskyi V; Anfinrud P; Bax A
    J Intern Med; 2021 Nov; 290(5):1010-1027. PubMed ID: 34105202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why airborne transmission hasn't been conclusive in case of COVID-19? An atmospheric science perspective.
    Ram K; Thakur RC; Singh DK; Kawamura K; Shimouchi A; Sekine Y; Nishimura H; Singh SK; Pavuluri CM; Singh RS; Tripathi SN
    Sci Total Environ; 2021 Jun; 773():145525. PubMed ID: 33940729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional mathematical framework for evaporation dynamics of respiratory droplets.
    Majee S; Saha A; Chaudhuri S; Chakravortty D; Basu S
    Phys Fluids (1994); 2021 Oct; 33(10):103302. PubMed ID: 34744412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viral kinetics and exhaled droplet size affect indoor transmission dynamics of influenza infection.
    Chen SC; Chio CP; Jou LJ; Liao CM
    Indoor Air; 2009 Oct; 19(5):401-13. PubMed ID: 19659895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing suspension and infectivity times of virus-loaded aerosols involved in airborne transmission.
    Merhi T; Atasi O; Coetsier C; Lalanne B; Roger K
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2204593119. PubMed ID: 35930663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.