BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35397911)

  • 21. Fe-N/C single-atom nanozyme-based colorimetric sensor array for discriminating multiple biological antioxidants.
    Jing W; Cui X; Kong F; Wei W; Li Y; Fan L; Li X
    Analyst; 2021 Jan; 146(1):207-212. PubMed ID: 33089838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of a colorimetric sensor array for the identification of phenolic compounds by the laccase-like activity of N-doped manganese oxide.
    Chen Z; Li S; Yang F; Yue W
    Talanta; 2024 Feb; 268(Pt 2):125324. PubMed ID: 37951179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A smartphone-based colorimetric assay using Cu-tannic acid nanosheets (Cu-TA NShs) as a laccase-mimicking nanozyme for visual detection of quercetin in vegetables.
    Davoodi-Rad K; Shokrollahi A; Shahdost-Fard F; Azadkish K; Madani-Nejad E
    Mikrochim Acta; 2024 Feb; 191(3):168. PubMed ID: 38418635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymatic oxidative transformation of chlorophenol mixtures.
    Bollag JM; Chu HL; Rao MA; Gianfreda L
    J Environ Qual; 2003; 32(1):63-9. PubMed ID: 12549543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laccase-mimicking Mn-Cu hybrid nanoflowers for paper-based visual detection of phenolic neurotransmitters and rapid degradation of dyes.
    Le TN; Le XA; Tran TD; Lee KJ; Kim MI
    J Nanobiotechnology; 2022 Aug; 20(1):358. PubMed ID: 35918697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Colorimetric sensor array for discriminating and determinating phenolic pollutants basing on different ratio of ligands in Cu/MOFs.
    Zhu J; Jiang H; Wang W
    J Hazard Mater; 2023 Oct; 460():132418. PubMed ID: 37647664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper-Guanosine Nanorods (Cu-Guo NRs) as a Laccase Mimicking Nanozyme for Colorimetric Detection of Rutin.
    Davoodi-Rad K; Shokrollahi A; Shahdost-Fard F; Azadkish K
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laccase-mediated detoxification of phenolic compounds.
    Bollag JM; Shuttleworth KL; Anderson DH
    Appl Environ Microbiol; 1988 Dec; 54(12):3086-91. PubMed ID: 3223771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Kinetic analysis of laccase catalyze phenolic and aniline compounds and detecting catechol in wastewater].
    Zhong PF; Peng HM; Peng FY; Cai Q; He M
    Huan Jing Ke Xue; 2010 Nov; 31(11):2673-7. PubMed ID: 21250450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models.
    d'Acunzo F; Galli C
    Eur J Biochem; 2003 Sep; 270(17):3634-40. PubMed ID: 12919328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanozymes sensor array for discrimination and intelligent sensing of phenolic acids in food.
    Jing W; Yang Y; Shi Q; Xu J; Xing G; Dai Y; Liu F
    Food Chem; 2024 Aug; 450():139326. PubMed ID: 38615530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solid Migration to Assemble a Flower-like Nanozyme with Highly Dense Single Copper Sites for Specific Phenol Oxidation.
    Chen M; Zhang H; Tian L; Lv H; Chen C; Liu X; Wang W; Wang Y; Zhao Y; Wang J; Zhou H; Mao Y; Xiong C; Wu Y
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):407-415. PubMed ID: 36575927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron single-atom anchored N-doped carbon as a 'laccase-like' nanozyme for the degradation and detection of phenolic pollutants and adrenaline.
    Lin Y; Wang F; Yu J; Zhang X; Lu GP
    J Hazard Mater; 2022 Mar; 425():127763. PubMed ID: 34801307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic treatment of phenolic pollutants by a small laccase immobilized on APTES-functionalised magnetic nanoparticles.
    Yadav D; Ranjan B; Mchunu N; Le Roes-Hill M; Kudanga T
    3 Biotech; 2021 Jun; 11(6):302. PubMed ID: 34194895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catecholase activity of a series of dicopper(II) complexes with variable Cu-OH(phenol) moieties.
    Neves A; Rossi LM; Bortoluzzi AJ; Szpoganicz B; Wiezbicki C; Schwingel E; Haase W; Ostrovsky S
    Inorg Chem; 2002 Apr; 41(7):1788-94. PubMed ID: 11925171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extension of the alkyl chain length to adjust the properties of laccase-mimicking MOFs for phenolic detection and discrimination.
    Fu Z; Guo F; Qiu J; Zhang R; Wang M; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121606. PubMed ID: 35839694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosensor for the determination of phenols based on cross-linked enzyme crystals (CLEC) of laccase.
    Roy JJ; Abraham TE; Abhijith KS; Kumar PV; Thakur MS
    Biosens Bioelectron; 2005 Jul; 21(1):206-11. PubMed ID: 15967371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioinspired laccase-mimicking catalyst for on-site monitoring of thiram in paper-based colorimetric platform.
    Li A; Li H; Ma Y; Wang T; Liu X; Wang C; Liu F; Sun P; Yan X; Lu G
    Biosens Bioelectron; 2022 Jul; 207():114199. PubMed ID: 35325721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective sensing of catechol based on a fluorescent nanozyme with catechol oxidase activity.
    Wang L; Sun Y; Zhang H; Shi W; Huang H; Li Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123003. PubMed ID: 37336190
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of a recyclable oxidase-mimicking Fe
    Xu X; Wu S; Guo D; Niu X
    Anal Chim Acta; 2020 Apr; 1107():203-212. PubMed ID: 32200895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.