BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35398057)

  • 1. Converting soy protein isolate into biomass-based polymer electrolyte by grafting modification for high-performance supercapacitors.
    Wang J; Xun Z; Zhao C; Liu Y; Gu J; Huo P
    Int J Biol Macromol; 2022 Jun; 209(Pt A):268-278. PubMed ID: 35398057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of Polymer Electrolyte Based on Soybean Protein Isolate and Hydroxyethyl Cellulose for a Flexible Solid-State Supercapacitor.
    Xun Z; Ni S; Gao Z; Zhang Y; Gu J; Huo P
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31744185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of PEDOTOH/PEO-based Supercapacitors in Agarose Gel Electrolyte.
    Wustoni S; Nikiforidis G; Ohayon D; Inal S; Indartono YS; Suendo V; Yuliarto B
    Chem Asian J; 2022 Sep; 17(17):e202200427. PubMed ID: 35735047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biodegradable gel electrolyte for use in high-performance flexible supercapacitors.
    Moon WG; Kim GP; Lee M; Song HD; Yi J
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3503-11. PubMed ID: 25622040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Self-Healing Gel Polymer Electrolyte, Based on a Macromolecule Cross-Linked Chitosan for Flexible Supercapacitors.
    Xue X; Wan L; Li W; Tan X; Du X; Tong Y
    Gels; 2022 Dec; 9(1):. PubMed ID: 36661776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(3,4-ethylenedioxythiophene) Based Solid-State Polymer Supercapacitor with Ionic Liquid Gel Polymer Electrolyte.
    Du H; Wu Z; Xu Y; Liu S; Yang H
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32024287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Polymer Gel Electrolytes for Use in MnO
    Lin YH; Huang WT; Huang YT; Jhang YN; Shih TT; Yılmaz M; Deng MJ
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors.
    Han JH; Lee JY; Suh DH; Hong YT; Kim TH
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33913-33924. PubMed ID: 28892608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Promising Polymer Blend Electrolytes Based on Chitosan: Methyl Cellulose for EDLC Application with High Specific Capacitance and Energy Density.
    Aziz SB; Hamsan MH; Abdullah RM; Kadir MFZ
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31323966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable and Printable Nanocellulose-Based Ionogels as Gel Polymer Electrolytes for Supercapacitors.
    González-Gil RM; Borràs M; Chbani A; Abitbol T; Fall A; Aulin C; Aucher C; Martínez-Crespiera S
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Ionic Liquid-Based Gel Polymer Electrolyte Incorporating Anion-Trapping Boron Sites for All-Solid-State Supercapacitor Application.
    Jin M; Zhang Y; Yan C; Fu Y; Guo Y; Ma X
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39570-39580. PubMed ID: 29856593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel poly(arylene ether ketone)/poly(ethylene glycol)-grafted poly(arylene ether ketone) composite microporous polymer electrolyte for electrical double-layer capacitors with efficient ionic transport.
    Hu F; Liu Y; Shao W; Zhang T; Liu S; Liu D; Zhang S; Jian X
    RSC Adv; 2021 Apr; 11(24):14814-14823. PubMed ID: 35424018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Proton Conducting Polymer Blend Electrolytes Based on Chitosan:Dextran with Constant Specific Capacitance and Energy Density.
    Aziz SB; Hamsan MH; Karim WO; Kadir MFZ; Brza MA; Abdullah OG
    Biomolecules; 2019 Jul; 9(7):. PubMed ID: 31323956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomass-based Hierarchical Porous Carbon for Supercapacitors: Effect of Aqueous and Organic Electrolytes on the Electrochemical Performance.
    Chen Z; Wang X; Ding Z; Wei Q; Wang Z; Yang X; Qiu J
    ChemSusChem; 2019 Dec; 12(23):5099-5110. PubMed ID: 31612622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Crosslinked Soybean Protein Isolate Gel Polymer Electrolyte Based on Neutral Aqueous Electrolyte for a High-Energy-Density Supercapacitor.
    Huo P; Ni S; Hou P; Xun Z; Liu Y; Gu J
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31086006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesizing a Gel Polymer Electrolyte for Supercapacitors, Assembling a Supercapacitor Using a Coin Cell, and Measuring Gel Electrolyte Performance.
    Kwon O; Kang J; Jang S; Choi S; Eom H; Shin J; Park JK; Park S; Nam I
    J Vis Exp; 2022 Nov; (189):. PubMed ID: 36533837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors.
    Jiang M; Zhu J; Chen C; Lu Y; Ge Y; Zhang X
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3473-81. PubMed ID: 26788748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-Linked Polyacrylic-Based Hydrogel Polymer Electrolytes for Flexible Supercapacitors.
    Shi L; Jiang P; Zhang P; Duan N; Liu Q; Qin C
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printable Gel Polymer Electrolytes for Solid-State Printed Supercapacitors.
    Seol ML; Nam I; Sadatian E; Dutta N; Han JW; Meyyappan M
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33435423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple-heteroatom doped porous carbons from self-activation of lignosulfonate with melamine for high performance supercapacitors.
    Li X; Zhang W; Wu M; Li S; Li X; Li Z
    Int J Biol Macromol; 2021 Jul; 183():950-961. PubMed ID: 33965494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.