These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35398315)

  • 1. Sustainable utilization of biomass resources for decentralized energy generation and climate change mitigation: A regional case study in India.
    Vijay V; Kapoor R; Singh P; Hiloidhari M; Ghosh P
    Environ Res; 2022 Sep; 212(Pt B):113257. PubMed ID: 35398315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Appraising the availability of biomass residues in India and their bioenergy potential.
    Deep Singh A; Gajera B; Sarma AK
    Waste Manag; 2022 Oct; 152():38-47. PubMed ID: 35973326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and temporal dynamics of agricultural residue resources in the last 30 years in China.
    Yang Y; Zhang P; Yang X; Xu X
    Waste Manag Res; 2016 Dec; 34(12):1231-1240. PubMed ID: 27895284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Untapped renewable energy potential of crop residues in Pakistan: Challenges and future directions.
    Kashif M; Awan MB; Nawaz S; Amjad M; Talib B; Farooq M; Nizami AS; Rehan M
    J Environ Manage; 2020 Feb; 256():109924. PubMed ID: 31818740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass pellets for power generation in India: a techno-economic evaluation.
    Purohit P; Chaturvedi V
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29614-29632. PubMed ID: 30141169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of carbon footprint effect of renewable power plants regarding energy production: A case study of a city in Turkey.
    Kerem A
    J Air Waste Manag Assoc; 2022 Mar; 72(3):294-307. PubMed ID: 35030055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-energy potential of available livestock waste and surplus agriculture crop residue: An analysis of 602 rural districts of India.
    Kumar R; Kumar V; Nagpure AS
    Sci Total Environ; 2023 Sep; 889():163974. PubMed ID: 37207774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yield, water, and carbon footprint of rainfed rice production under the lens of mid-century climate change: a case study in the eastern coastal agro-climatic zone, Odisha, India.
    Behera SS; Ojha CSP; Prasad KSH; Dash SS
    Environ Monit Assess; 2023 Apr; 195(5):544. PubMed ID: 37017873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do soil conservation practices exceed their relevance as a countermeasure to greenhouse gases emissions and increase crop productivity in agriculture?
    Shakoor A; Dar AA; Arif MS; Farooq TH; Yasmeen T; Shahzad SM; Tufail MA; Ahmed W; Albasher G; Ashraf M
    Sci Total Environ; 2022 Jan; 805():150337. PubMed ID: 34543788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different characteristics of greenhouse gases and ammonia emissions from conventional stored dairy cattle and swine manure in China.
    Zhuang M; Shan N; Wang Y; Caro D; Fleming RM; Wang L
    Sci Total Environ; 2020 Jun; 722():137693. PubMed ID: 32192975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials.
    Kang Y; Yang Q; Bartocci P; Wei H; Liu SS; Wu Z; Zhou H; Yang H; Fantozzi F; Chen H
    Renew Sustain Energy Rev; 2020 Jul; 127():109842. PubMed ID: 34234613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioenergy potential from crop residue biomass resources in Ethiopia.
    Tolessa A
    Heliyon; 2023 Feb; 9(2):e13572. PubMed ID: 36825179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable bioenergy contributes to cost-effective climate change mitigation in China.
    Xu Y; Smith P; Qin Z
    iScience; 2024 Jul; 27(7):110232. PubMed ID: 39021785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of bioenergy plant locations using a GIS-MCDA approach based on spatio-temporal stability maps of agricultural and livestock byproducts: A case study.
    Shi Z; Marinello F; Ai P; Pezzuolo A
    Sci Total Environ; 2024 Jul; 947():174665. PubMed ID: 38992388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.
    Elum ZA; Modise DM; Nhamo G
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3260-3273. PubMed ID: 27933500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental and economic evaluation of bioenergy in Ontario, Canada.
    Zhang Y; Habibi S; MacLean HL
    J Air Waste Manag Assoc; 2007 Aug; 57(8):919-33. PubMed ID: 17824282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential impacts of biomass feedstock production on water resource availability.
    Stone KC; Hunt PG; Cantrell KB; Ro KS
    Bioresour Technol; 2010 Mar; 101(6):2014-25. PubMed ID: 19939667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global bioenergy potential from high-lignin agricultural residue.
    Mendu V; Shearin T; Campbell JE; Stork J; Jae J; Crocker M; Huber G; DeBolt S
    Proc Natl Acad Sci U S A; 2012 Mar; 109(10):4014-9. PubMed ID: 22355123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation.
    Xing Y; Li Z; Fan Y; Hou H
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of sustainable agriculture and renewable-resource management in reducing greenhouse-gas emissions and increasing sinks in China and India.
    Pretty JN; Ball AS; Xiaoyun L; Ravindranath NH
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1741-61. PubMed ID: 12460495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.