These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35398317)

  • 81. Reactions of Criegee Intermediates with Alcohols at Air-Aqueous Interfaces.
    Enami S; Colussi AJ
    J Phys Chem A; 2017 Jul; 121(27):5175-5182. PubMed ID: 28635281
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Study of Secondary Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile Organic Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model.
    Choi MS; Qiu X; Zhang J; Wang S; Li X; Sun Y; Chen J; Ying Q
    Environ Sci Technol; 2020 Nov; 54(21):13409-13418. PubMed ID: 33074656
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Sea spray aerosols intervening phospholipids ozonolysis at the air-water interface.
    He J; Zhang H; Ma Y; He Y; Liu Z; Liu J; Wang S; Liu Y; Yu K; Jiang J
    J Hazard Mater; 2022 May; 430():128466. PubMed ID: 35739660
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Efficient scavenging of Criegee intermediates on water by surface-active cis-pinonic acid.
    Enami S; Colussi AJ
    Phys Chem Chem Phys; 2017 Jul; 19(26):17044-17051. PubMed ID: 28643829
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Atmospheric Spectroscopy and Photochemistry at Environmental Water Interfaces.
    Zhong J; Kumar M; Anglada JM; Martins-Costa MTC; Ruiz-Lopez MF; Zeng XC; Francisco JS
    Annu Rev Phys Chem; 2019 Jun; 70():45-69. PubMed ID: 31174459
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Evidence and evolution of Criegee intermediates, hydroperoxides and secondary organic aerosols formed via ozonolysis of α-pinene.
    Bagchi A; Yu Y; Huang JH; Tsai CC; Hu WP; Wang CC
    Phys Chem Chem Phys; 2020 Mar; 22(12):6528-6537. PubMed ID: 32091071
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Online Quantification of Criegee Intermediates of α-Pinene Ozonolysis by Stabilization with Spin Traps and Proton-Transfer Reaction Mass Spectrometry Detection.
    Giorio C; Campbell SJ; Bruschi M; Tampieri F; Barbon A; Toffoletti A; Tapparo A; Paijens C; Wedlake AJ; Grice P; Howe DJ; Kalberer M
    J Am Chem Soc; 2017 Mar; 139(11):3999-4008. PubMed ID: 28201872
    [TBL] [Abstract][Full Text] [Related]  

  • 88. QM/MM studies on ozonolysis of α-humulene and Criegee reactions with acids and water at air-water/acetonitrile interfaces.
    Xiao P; Yang JJ; Fang WH; Cui G
    Phys Chem Chem Phys; 2018 Jun; 20(23):16138-16150. PubMed ID: 29854994
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Predicting the importance of oxidative aging on indoor organic aerosol concentrations using the two-dimensional volatility basis set (2D-VBS).
    Cummings BE; Waring MS
    Indoor Air; 2019 Jul; 29(4):616-629. PubMed ID: 30861195
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales.
    Shiraiwa M; Carslaw N; Tobias DJ; Waring MS; Rim D; Morrison G; Lakey PSJ; Kruza M; von Domaros M; Cummings BE; Won Y
    Environ Sci Process Impacts; 2019 Aug; 21(8):1240-1254. PubMed ID: 31070639
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Determination of total and non-water soluble iodine in atmospheric aerosols by thermal extraction and spectrometric detection (TESI).
    Gilfedder BS; Chance R; Dettmann U; Lai SC; Baker AR
    Anal Bioanal Chem; 2010 Sep; 398(1):519-26. PubMed ID: 20585941
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The Reactive-Diffusive Length of OH and Ozone in Model Organic Aerosols.
    Lee L; Wilson K
    J Phys Chem A; 2016 Sep; 120(34):6800-12. PubMed ID: 27509443
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols.
    Parshintsev J; Vaikkinen A; Lipponen K; Vrkoslav V; Cvačka J; Kostiainen R; Kotiaho T; Hartonen K; Riekkola ML; Kauppila TJ
    Rapid Commun Mass Spectrom; 2015 Jul; 29(13):1233-41. PubMed ID: 26395607
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Seasonal variation characteristics of hydroxyl radical pollution and its potential formation mechanism during the daytime in Lanzhou.
    Wang G; Jia S; Li R; Ma S; Chen X; Wu Z; Shi G; Niu X
    J Environ Sci (China); 2020 Sep; 95():58-64. PubMed ID: 32653193
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Probing the OH Oxidation of Pinonic Acid at the Air-Water Interface Using Field-Induced Droplet Ionization Mass Spectrometry (FIDI-MS).
    Huang Y; Barraza KM; Kenseth CM; Zhao R; Wang C; Beauchamp JL; Seinfeld JH
    J Phys Chem A; 2018 Aug; 122(31):6445-6456. PubMed ID: 30011201
    [TBL] [Abstract][Full Text] [Related]  

  • 96. No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014.
    Tan Z; Hofzumahaus A; Lu K; Brown SS; Holland F; Huey LG; Kiendler-Scharr A; Li X; Liu X; Ma N; Min KE; Rohrer F; Shao M; Wahner A; Wang Y; Wiedensohler A; Wu Y; Wu Z; Zeng L; Zhang Y; Fuchs H
    Environ Sci Technol; 2020 May; 54(10):5973-5979. PubMed ID: 32343120
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Investigation of alpha-pinene + ozone secondary organic aerosol formation at low total aerosol mass.
    Presto AA; Donahue NM
    Environ Sci Technol; 2006 Jun; 40(11):3536-43. PubMed ID: 16786691
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Biogenic secondary organic aerosols: A review on formation mechanism, analytical challenges and environmental impacts.
    Mahilang M; Deb MK; Pervez S
    Chemosphere; 2021 Jan; 262():127771. PubMed ID: 32799139
    [TBL] [Abstract][Full Text] [Related]  

  • 99. NDMA formation from 4,4'-hexamethylenebis (HDMS) during ozonation: influencing factors and mechanisms.
    Shen L; Liao X; Qi H; Zhao L; Li F; Yuan B
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1584-1594. PubMed ID: 30443725
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Heterogeneous reactivity of suspended pirimiphos-methyl particles with ozone.
    Yang B; Zhang Y; Meng J; Gan J; Shu J
    Environ Sci Technol; 2010 May; 44(9):3311-6. PubMed ID: 20387875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.