BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35398319)

  • 21. Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae.
    Motegi A; Kuntz K; Majeed A; Smith S; Myung K
    Mol Cell Biol; 2006 Feb; 26(4):1424-33. PubMed ID: 16449653
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae.
    Pagès V; Bresson A; Acharya N; Prakash S; Fuchs RP; Prakash L
    Genetics; 2008 Sep; 180(1):73-82. PubMed ID: 18757916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Helicase activities of Rad5 and Rrm3 genetically interact in the prevention of recombinogenic DNA lesions in Saccharomyces cerevisiae.
    Muellner J; Schmidt KH
    DNA Repair (Amst); 2023 Jun; 126():103488. PubMed ID: 37054652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Zn-finger of Saccharomyces cerevisiae Rad18 and its adjacent region mediate interaction with Rad5.
    Frittmann O; Gali VK; Halmai M; Toth R; Gyorfy Z; Balint E; Unk I
    G3 (Bethesda); 2021 Apr; 11(4):. PubMed ID: 33570581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial regulation of DNA damage tolerance protein Rad5 interconnects genome stability maintenance and proteostasis networks.
    Lehmann CP; González-Fernández P; Tercero JA
    Nucleic Acids Res; 2024 Feb; 52(3):1156-1172. PubMed ID: 38055836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5.
    Carlile CM; Pickart CM; Matunis MJ; Cohen RE
    J Biol Chem; 2009 Oct; 284(43):29326-34. PubMed ID: 19706603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Saccharomyces cerevisiae MGS1 is essential in strains deficient in the RAD6-dependent DNA damage tolerance pathway.
    Hishida T; Ohno T; Iwasaki H; Shinagawa H
    EMBO J; 2002 Apr; 21(8):2019-29. PubMed ID: 11953321
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformational flexibility of fork-remodeling helicase Rad5 shown by full-ensemble hybrid methods.
    Gildenberg MS; Washington MT
    PLoS One; 2019; 14(10):e0223875. PubMed ID: 31626633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107.
    Das-Bradoo S; Nguyen HD; Wood JL; Ricke RM; Haworth JC; Bielinsky AK
    Nat Cell Biol; 2010 Jan; 12(1):74-9; sup pp 1-20. PubMed ID: 20010813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strand invasion by HLTF as a mechanism for template switch in fork rescue.
    Burkovics P; Sebesta M; Balogh D; Haracska L; Krejci L
    Nucleic Acids Res; 2014 Feb; 42(3):1711-20. PubMed ID: 24198246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fork-Remodeling Helicase Rad5 Preferentially Reverses Replication Forks with Gaps in the Leading Strand.
    Ling JA; Gildenberg MS; Honda M; Kondratick CM; Spies M; Washington MT
    J Mol Biol; 2023 Feb; 435(4):167946. PubMed ID: 36623584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Swi2/Snf2-like protein Uls1 functions in the Sgs1-dependent pathway of maintenance of rDNA stability and alleviation of replication stress.
    Kramarz K; Litwin I; Cal-Bąkowska M; Szakal B; Branzei D; Wysocki R; Dziadkowiec D
    DNA Repair (Amst); 2014 Sep; 21():24-35. PubMed ID: 25091157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.
    Hampp S; Kiessling T; Buechle K; Mansilla SF; Thomale J; Rall M; Ahn J; Pospiech H; Gottifredi V; Wiesmüller L
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4311-9. PubMed ID: 27407148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Essential domains of Schizosaccharomyces pombe Rad8 required for DNA damage response.
    Ding L; Forsburg SL
    G3 (Bethesda); 2014 May; 4(8):1373-84. PubMed ID: 24875629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The RING finger ATPase Rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner.
    Chen S; Davies AA; Sagan D; Ulrich HD
    Nucleic Acids Res; 2005; 33(18):5878-86. PubMed ID: 16224103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversal of fortune: Rad5 to the rescue.
    Klein HL
    Mol Cell; 2007 Oct; 28(2):181-3. PubMed ID: 17964257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of a Novel DNA-binding Domain of Helicase-like Transcription Factor (HLTF) and Its Functional Implication in DNA Damage Tolerance.
    Hishiki A; Hara K; Ikegaya Y; Yokoyama H; Shimizu T; Sato M; Hashimoto H
    J Biol Chem; 2015 May; 290(21):13215-23. PubMed ID: 25858588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks.
    Minca EC; Kowalski D
    Mol Cell; 2010 Jun; 38(5):649-61. PubMed ID: 20541998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SUMOylation regulates Rad18-mediated template switch.
    Branzei D; Vanoli F; Foiani M
    Nature; 2008 Dec; 456(7224):915-20. PubMed ID: 19092928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Swi2-Snf2-like protein Uls1 is involved in replication stress response.
    Cal-Bakowska M; Litwin I; Bocer T; Wysocki R; Dziadkowiec D
    Nucleic Acids Res; 2011 Nov; 39(20):8765-77. PubMed ID: 21764775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.