These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 35398358)

  • 41. Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family.
    Hayashi CY; Blackledge TA; Lewis RV
    Mol Biol Evol; 2004 Oct; 21(10):1950-9. PubMed ID: 15240839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Properties of two spliceoforms of major ampullate spidroin 1 reveal unique functions of N-linker region.
    Wang K; Wen R; Meng Q
    Int J Biol Macromol; 2020 Aug; 157():67-74. PubMed ID: 32339592
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure and function of C-terminal domain of aciniform spidroin.
    Wang S; Huang W; Yang D
    Biomacromolecules; 2014 Feb; 15(2):468-77. PubMed ID: 24422432
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recombinant Production, Characterization, and Fiber Spinning of an Engineered Short Major Ampullate Spidroin (MaSp1s).
    Thamm C; Scheibel T
    Biomacromolecules; 2017 Apr; 18(4):1365-1372. PubMed ID: 28233980
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Long-read transcriptomic analysis of orb-weaving spider Araneus ventricosus indicates transcriptional diversity of spidroins.
    Zhou SY; Dong QL; Zhu KS; Gao L; Chen X; Xiang H
    Int J Biol Macromol; 2021 Jan; 168():395-402. PubMed ID: 33275979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Major ampullate spidroins from Euprosthenops australis: multiplicity at protein, mRNA and gene levels.
    Rising A; Johansson J; Larson G; Bongcam-Rudloff E; Engström W; Hjälm G
    Insect Mol Biol; 2007 Oct; 16(5):551-61. PubMed ID: 17680798
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Disabling spidroin N-terminal homologs' reverse reaction unveils why its intermolecular disulfide bonds have not evolved for 380 million years.
    Mi J; Zhou X; Sun R; Han J
    Int J Biol Macromol; 2023 Sep; 249():125974. PubMed ID: 37499718
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acidic Residues Control the Dimerization of the N-terminal Domain of Black Widow Spiders' Major Ampullate Spidroin 1.
    Bauer J; Schaal D; Eisoldt L; Schweimer K; Schwarzinger S; Scheibel T
    Sci Rep; 2016 Sep; 6():34442. PubMed ID: 27681031
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of the genome and silk-gland transcriptomes of Darwin's bark spider (Caerostris darwini).
    Babb PL; Gregorič M; Lahens NF; Nicholson DN; Hayashi CY; Higgins L; Kuntner M; Agnarsson I; Voight BF
    PLoS One; 2022; 17(6):e0268660. PubMed ID: 35666730
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders.
    dos Santos-Pinto JR; Lamprecht G; Chen WQ; Heo S; Hardy JG; Priewalder H; Scheibel TR; Palma MS; Lubec G
    J Proteomics; 2014 Jun; 105():174-85. PubMed ID: 24434585
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins.
    Motriuk-Smith D; Smith A; Hayashi CY; Lewis RV
    Biomacromolecules; 2005; 6(6):3152-9. PubMed ID: 16283740
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of the Full-Length Pyriform Spidroin Gene Sequence.
    Wang K; Wen R; Jia Q; Liu X; Xiao J; Meng Q
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31163680
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-yield Production of Amyloid-β Peptide Enabled by a Customized Spider Silk Domain.
    Abelein A; Chen G; Kitoka K; Aleksis R; Oleskovs F; Sarr M; Landreh M; Pahnke J; Nordling K; Kronqvist N; Jaudzems K; Rising A; Johansson J; Biverstål H
    Sci Rep; 2020 Jan; 10(1):235. PubMed ID: 31937841
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient Biosynthetic Fabrication of Spidroins with High Spinning Performance.
    Lin B; Xie J; Gao B; He B
    Adv Sci (Weinh); 2024 Jun; 11(22):e2400128. PubMed ID: 38520721
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rapid molecular diversification and homogenization of clustered major ampullate silk genes in Argiope garden spiders.
    Baker RH; Corvelo A; Hayashi CY
    PLoS Genet; 2022 Dec; 18(12):e1010537. PubMed ID: 36508456
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of two full-length Araneus ventricosus major ampullate silk protein genes.
    Wen R; Yang D; Wang K; Zan X
    Int J Biol Macromol; 2022 Jul; 213():297-304. PubMed ID: 35654219
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation.
    Hedhammar M; Rising A; Grip S; Martinez AS; Nordling K; Casals C; Stark M; Johansson J
    Biochemistry; 2008 Mar; 47(11):3407-17. PubMed ID: 18293938
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conserved C-termini of Spidroins are secreted by the major ampullate glands and retained in the silk thread.
    Sponner A; Unger E; Grosse F; Weisshart K
    Biomacromolecules; 2004; 5(3):840-5. PubMed ID: 15132670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus.
    La Mattina C; Reza R; Hu X; Falick AM; Vasanthavada K; McNary S; Yee R; Vierra CA
    Biochemistry; 2008 Apr; 47(16):4692-700. PubMed ID: 18376847
    [TBL] [Abstract][Full Text] [Related]  

  • 60. From EST to novel spider silk gene identification for production of spidroin-based biomaterials.
    Huang W; Zhang Y; Chen Y; Wang Y; Yuan W; Zhang N; Lam TJ; Gong Z; Yang D; Lin Z
    Sci Rep; 2017 Oct; 7(1):13354. PubMed ID: 29042670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.