These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35398435)

  • 1. Can the carbon metabolic activity of biofilm be regulated by the hydrodynamic conditions in urban rivers?
    Hou J; Shao G; Adyel TM; Li C; Liu Z; Liu S; Miao L
    Sci Total Environ; 2022 Aug; 832():155082. PubMed ID: 35398435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions.
    Wang S; Zhu H; Zheng G; Dong F; Liu C
    Appl Environ Microbiol; 2022 Nov; 88(22):e0107222. PubMed ID: 36300948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of hydrodynamics on the succession of autotrophic and heterotrophic organisms of biofilms in river ecosystems.
    Pan M; Liu X; Ma W; Li X; Li H; Ding C; Chen Y; Chen R
    Water Sci Technol; 2021 Jan; 83(1):63-76. PubMed ID: 33460407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the Desiccation Duration on the Dynamic Responses of Biofilm Metabolic Activities to Rewetting.
    Miao L; Li C; Adyel TM; Huang W; Wu J; Yu Y; Hou J
    Environ Sci Technol; 2023 Jan; 57(4):1828-1836. PubMed ID: 36637413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.
    Mathieu L; Bertrand I; Abe Y; Angel E; Block JC; Skali-Lami S; Francius G
    Water Res; 2014 May; 55():175-84. PubMed ID: 24607313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the effects of aerodynamic and hydrodynamic shear forces on Pseudomonas aeruginosa biofilm growth.
    Zhang Y; Silva DM; Young P; Traini D; Li M; Ong HX; Cheng S
    Biotechnol Bioeng; 2022 Jun; 119(6):1483-1497. PubMed ID: 35274289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of shear stress and growth conditions on detachment and physical properties of biofilms.
    Paul E; Ochoa JC; Pechaud Y; Liu Y; Liné A
    Water Res; 2012 Nov; 46(17):5499-5508. PubMed ID: 22898671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical hydrodynamic force levels for efficient removal of oral biofilms in simulated interdental spaces.
    Hotic M; Ackermann M; Bopp J; Hofmann N; Karygianni L; Paqué PN
    Clin Oral Investig; 2024 May; 28(6):346. PubMed ID: 38819592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of hydrodynamic conditions and microscale surface roughness on the critical shear stress to develop and thickness of early-stage Pseudomonas putida biofilms.
    Wei G; Yang JQ
    Biotechnol Bioeng; 2023 Jul; 120(7):1797-1808. PubMed ID: 37102364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation of acquired morphology and community structure in aged biofilms after facing environmental stress.
    Saur T; Escudié R; Santa-Catalina G; Bernet N; Milferstedt K
    Water Res; 2016 Jan; 88():164-172. PubMed ID: 26492343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of chlorination and hydrodynamic shear stress on the persistence of bacteriophages associated with drinking water biofilms.
    Pelleieux S; Mathieu L; Block JC; Gantzer C; Bertrand I
    J Appl Microbiol; 2016 Oct; 121(4):1189-97. PubMed ID: 27452787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.
    Thomen P; Robert J; Monmeyran A; Bitbol AF; Douarche C; Henry N
    PLoS One; 2017; 12(4):e0175197. PubMed ID: 28403171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cohesiveness and hydrodynamic properties of young drinking water biofilms.
    Abe Y; Skali-Lami S; Block JC; Francius G
    Water Res; 2012 Mar; 46(4):1155-66. PubMed ID: 22221338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Selection of Platforms to Evaluate Surface Adhesion and Biofilm Formation in Controlled Hydrodynamic Conditions.
    Gomes LC; Mergulhão FJM
    Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilms in 3D porous media: Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development.
    Carrel M; Morales VL; Beltran MA; Derlon N; Kaufmann R; Morgenroth E; Holzner M
    Water Res; 2018 May; 134():280-291. PubMed ID: 29433078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian approach to modelling the impact of hydrodynamic shear stress on biofilm deformation.
    Oyebamiji OK; Wilkinson DJ; Jayathilake PG; Rushton SP; Bridgens B; Li B; Zuliani P
    PLoS One; 2018; 13(4):e0195484. PubMed ID: 29649240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions.
    Zhang W; Sileika TS; Chen C; Liu Y; Lee J; Packman AI
    Biotechnol Bioeng; 2011 Nov; 108(11):2571-82. PubMed ID: 21656713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems.
    Risse-Buhl U; Anlanger C; Kalla K; Neu TR; Noss C; Lorke A; Weitere M
    Water Res; 2017 Dec; 127():211-222. PubMed ID: 29049969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of hydrodynamics on oral biofilm strength.
    Paramonova E; Kalmykowa OJ; van der Mei HC; Busscher HJ; Sharma PK
    J Dent Res; 2009 Oct; 88(10):922-6. PubMed ID: 19783800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.