BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35398513)

  • 1. Recombinase-mediated cassette exchange-based screening of a CRISPR/Cas9 library for enhanced recombinant protein production in human embryonic kidney cells: Improving resistance to hyperosmotic stress.
    Shin S; Kim SH; Park JH; Lee JS; Lee GM
    Metab Eng; 2022 Jul; 72():247-258. PubMed ID: 35398513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of hyperosmotic stress-responsive genes in Chinese hamster ovary cells via genome-wide virus-free CRISPR/Cas9 screening.
    Kim SH; Shin S; Baek M; Xiong K; Karottki KJC; Hefzi H; Grav LM; Pedersen LE; Kildegaard HF; Lewis NE; Lee JS; Lee GM
    Metab Eng; 2023 Nov; 80():66-77. PubMed ID: 37709005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streamlined Human Cell-Based Recombinase-Mediated Cassette Exchange Platform Enables Multigene Expression for the Production of Therapeutic Proteins.
    Shin S; Kim SH; Lee JS; Lee GM
    ACS Synth Biol; 2021 Jul; 10(7):1715-1727. PubMed ID: 34133132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO Cells.
    Inniss MC; Bandara K; Jusiak B; Lu TK; Weiss R; Wroblewska L; Zhang L
    Biotechnol Bioeng; 2017 Aug; 114(8):1837-1846. PubMed ID: 28186334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification
    Yum SY; Choi W; Kim S; Jang G; Koo O
    Anim Biotechnol; 2023 Dec; 34(9):4730-4735. PubMed ID: 36905152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted integration in CHO cells using CRIS-PITCh/Bxb1 recombinase-mediated cassette exchange hybrid system.
    Ghanbari S; Bayat E; Azizi M; Fard-Esfahani P; Modarressi MH; Davami F
    Appl Microbiol Biotechnol; 2023 Feb; 107(2-3):769-783. PubMed ID: 36536089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicopy Targeted Integration for Accelerated Development of High-Producing Chinese Hamster Ovary Cells.
    Sergeeva D; Lee GM; Nielsen LK; Grav LM
    ACS Synth Biol; 2020 Sep; 9(9):2546-2561. PubMed ID: 32835482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Evaluation of Site-Specific Recombinant Gene Expression for Programmable Mammalian Cell Engineering.
    Pristovšek N; Nallapareddy S; Grav LM; Hefzi H; Lewis NE; Rugbjerg P; Hansen HG; Lee GM; Andersen MR; Kildegaard HF
    ACS Synth Biol; 2019 Apr; 8(4):758-774. PubMed ID: 30807689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of extra sequences with I-SceI in combination with CRISPR/Cas9 technique for precise gene editing in Drosophila.
    Zolotarev N; Georgiev P; Maksimenko O
    Biotechniques; 2019 Apr; 66(4):198-201. PubMed ID: 30987444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TP901-1 Phage Recombinase Facilitates Genome Engineering in
    Voutev R; Mann RS
    G3 (Bethesda); 2019 Apr; 9(4):983-986. PubMed ID: 30696702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific chromosomal gene insertion: Flp recombinase versus Cas9 nuclease.
    Phan QV; Contzen J; Seemann P; Gossen M
    Sci Rep; 2017 Dec; 7(1):17771. PubMed ID: 29259215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperosmotic stimulus study discloses benefits in ATP supply and reveals miRNA/mRNA targets to improve recombinant protein production of CHO cells.
    Pfizenmaier J; Junghans L; Teleki A; Takors R
    Biotechnol J; 2016 Aug; 11(8):1037-47. PubMed ID: 27214792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bxb1 phage recombinase assists genome engineering in
    Voutev R; Mann RS
    Biotechniques; 2017 Jan; 62(1):37-38. PubMed ID: 28118814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions.
    Srirangan K; Loignon M; Durocher Y
    Crit Rev Biotechnol; 2020 Sep; 40(6):833-851. PubMed ID: 32456474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the secretory capacity of CHO producer cells: The effect of controlled Blimp1 expression, a master transcription factor for plasma cells.
    Kim SH; Baek M; Park S; Shin S; Lee JS; Lee GM
    Metab Eng; 2022 Jan; 69():73-86. PubMed ID: 34775077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pooled CRISPR/AsCpf1 screen using paired gRNAs to induce genomic deletions in Chinese hamster ovary cells.
    Schmieder V; Novak N; Dhiman H; Nguyen LN; Serafimova E; Klanert G; Baumann M; Kildegaard HF; Borth N
    Biotechnol Rep (Amst); 2021 Sep; 31():e00649. PubMed ID: 34277363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line.
    Zhang L; Inniss MC; Han S; Moffat M; Jones H; Zhang B; Cox WL; Rance JR; Young RJ
    Biotechnol Prog; 2015; 31(6):1645-56. PubMed ID: 26399954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insertion of sequences at the original provirus integration site of mouse ROSA26 locus using the CRISPR/Cas9 system.
    Quadros RM; Harms DW; Ohtsuka M; Gurumurthy CB
    FEBS Open Bio; 2015; 5():191-7. PubMed ID: 25834785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Analyses of Cassette Chromosome Recombinase C2 (CcrC2) and Its Use in Eliminating Methicillin Resistance by Combining CRISPR-Cas9.
    Wu Z; Zhang L; Qiao D; Xue H; Zhao X
    ACS Synth Biol; 2018 Nov; 7(11):2590-2599. PubMed ID: 30278126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile two-step CRISPR- and RMCE-based strategy for efficient genome engineering in Drosophila.
    Zhang X; Koolhaas WH; Schnorrer F
    G3 (Bethesda); 2014 Oct; 4(12):2409-18. PubMed ID: 25324299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.