BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35398710)

  • 1. Artificial intelligence: a solution to involution of design-build-test-learn cycle.
    Liao X; Ma H; Tang YJ
    Curr Opin Biotechnol; 2022 Jun; 75():102712. PubMed ID: 35398710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated Design-Build-Test-Learn Cycles for Consistent Comparison of Machine Learning Methods in Metabolic Engineering.
    van Lent P; Schmitz J; Abeel T
    ACS Synth Biol; 2023 Sep; 12(9):2588-2599. PubMed ID: 37616156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lessons from Two Design-Build-Test-Learn Cycles of Dodecanol Production in Escherichia coli Aided by Machine Learning.
    Opgenorth P; Costello Z; Okada T; Goyal G; Chen Y; Gin J; Benites V; de Raad M; Northen TR; Deng K; Deutsch S; Baidoo EEK; Petzold CJ; Hillson NJ; Garcia Martin H; Beller HR
    ACS Synth Biol; 2019 Jun; 8(6):1337-1351. PubMed ID: 31072100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A seamless and iterative DNA assembly method named PS-Brick and its assisted metabolic engineering for threonine and 1-propanol production.
    Liu S; Xiao H; Zhang F; Lu Z; Zhang Y; Deng A; Li Z; Yang C; Wen T
    Biotechnol Biofuels; 2019; 12():180. PubMed ID: 31338122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning-Guided Optimization of
    Moreno-Paz S; van der Hoek R; Eliana E; Zwartjens P; Gosiewska S; Martins Dos Santos VAP; Schmitz J; Suarez-Diez M
    ACS Synth Biol; 2024 Apr; 13(4):1312-1322. PubMed ID: 38545878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. History-Driven Genetic Modification Design Technique Using a Domain-Specific Lexical Model for the Acceleration of DBTL Cycles for Microbial Cell Factories.
    Nakazawa S; Imaichi O; Kogure T; Kubota T; Toyoda K; Suda M; Inui M; Ito K; Shirai T; Araki M
    ACS Synth Biol; 2021 Sep; 10(9):2308-2317. PubMed ID: 34351735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging knowledge engineering and machine learning for microbial bio-manufacturing.
    Oyetunde T; Bao FS; Chen JW; Martin HG; Tang YJ
    Biotechnol Adv; 2018; 36(4):1308-1315. PubMed ID: 29729378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the strain engineering process for industrial-scale production of bio-based molecules.
    Abbate E; Andrion J; Apel A; Biggs M; Chaves J; Cheung K; Ciesla A; Clark-ElSayed A; Clay M; Contridas R; Fox R; Hein G; Held D; Horwitz A; Jenkins S; Kalbarczyk K; Krishnamurthy N; Mirsiaghi M; Noon K; Rowe M; Shepherd T; Tarasava K; Tarasow TM; Thacker D; Villa G; Yerramsetty K
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37656881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolomics-based development of bioproduction processes toward industrial-scale production.
    Tanaka K; Bamba T; Kondo A; Hasunuma T
    Curr Opin Biotechnol; 2024 Feb; 85():103057. PubMed ID: 38154323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transition of Rhodobacter sphaeroides into a microbial cell factory.
    Orsi E; Beekwilder J; Eggink G; Kengen SWM; Weusthuis RA
    Biotechnol Bioeng; 2021 Feb; 118(2):531-541. PubMed ID: 33038009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bright frontiers of microbial metabolic optogenetics.
    Wegner SA; Barocio-Galindo RM; Avalos JL
    Curr Opin Chem Biol; 2022 Dec; 71():102207. PubMed ID: 36103753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Merging automation and fundamental discovery into the design-build-test-learn cycle of nontraditional microbes.
    Gurdo N; Volke DC; Nikel PI
    Trends Biotechnol; 2022 Oct; 40(10):1148-1159. PubMed ID: 35410817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae.
    Zhou Y; Li G; Dong J; Xing XH; Dai J; Zhang C
    Metab Eng; 2018 May; 47():294-302. PubMed ID: 29627507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome scale engineering techniques for metabolic engineering.
    Liu R; Bassalo MC; Zeitoun RI; Gill RT
    Metab Eng; 2015 Nov; 32():143-154. PubMed ID: 26453944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology.
    Zhang J; Chen Y; Fu L; Guo E; Wang B; Dai L; Si T
    Curr Opin Biotechnol; 2021 Feb; 67():88-98. PubMed ID: 33508635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated engineering of synthetic metabolic pathways for efficient biomanufacturing.
    Otero-Muras I; Carbonell P
    Metab Eng; 2021 Jan; 63():61-80. PubMed ID: 33316374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals.
    Carbonell P; Jervis AJ; Robinson CJ; Yan C; Dunstan M; Swainston N; Vinaixa M; Hollywood KA; Currin A; Rattray NJW; Taylor S; Spiess R; Sung R; Williams AR; Fellows D; Stanford NJ; Mulherin P; Le Feuvre R; Barran P; Goodacre R; Turner NJ; Goble C; Chen GG; Kell DB; Micklefield J; Breitling R; Takano E; Faulon JL; Scrutton NS
    Commun Biol; 2018; 1():66. PubMed ID: 30271948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaches to Computational Strain Design in the Multiomics Era.
    St John PC; Bomble YJ
    Front Microbiol; 2019; 10():597. PubMed ID: 31024467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle.
    Meng X; Xu P; Tao F
    iScience; 2023 Jul; 26(7):107069. PubMed ID: 37426353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of artificial intelligence and machine learning in dynamic pathway engineering.
    Merzbacher C; OyarzĂșn DA
    Biochem Soc Trans; 2023 Oct; 51(5):1871-1879. PubMed ID: 37656433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.