These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35398766)

  • 21. Tin Nanodots Derived From Sn
    Liu Z; Zhang S; Qiu Z; Huangfu C; Wang L; Wei T; Fan Z
    Small; 2020 Sep; 16(38):e2003557. PubMed ID: 32815308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual Enhancement of Sodium Storage Induced through Both S-Compositing and Co-Doping Strategies.
    Yue L; Li K; Sun G; Zhang W; Yang X; Cheng F; Zhang F; Xu N; Zhang J
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54043-54058. PubMed ID: 34734687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Octopus-Inspired Design of Apical NiS
    Wang N; Chen B; Qin K; Zhang R; Tang Y; Liu E; Shi C; He C; Zhao N
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17528-17537. PubMed ID: 32195569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A facile precursor route towards the synthesis of Fe
    Zhan G; Yan R; Liao W; Hu Q; Huang X
    Dalton Trans; 2023 Feb; 52(6):1711-1719. PubMed ID: 36651816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesoporous NiS
    Sun R; Liu S; Wei Q; Sheng J; Zhu S; An Q; Mai L
    Small; 2017 Oct; 13(39):. PubMed ID: 28834239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly dispersed ultrasmall NiS
    Zhao W; Ci S; Hu X; Chen J; Wen Z
    Nanoscale; 2019 Mar; 11(11):4688-4695. PubMed ID: 30820499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrogen and sulfur co-doped vanadium carbide MXene for highly reversible lithium-ion storage.
    Zhang Y; Li J; Gong Z; Xie J; Lu T; Pan L
    J Colloid Interface Sci; 2021 Apr; 587():489-498. PubMed ID: 33387843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel interlayer-expanded tin disulfide/reduced graphene oxide nanocomposite as anode material for high-performance sodium-ion batteries.
    Jiang Y; Liu G; Lu S; Ding Y; Xing C; Jiang J; Liu X; Zhao B
    J Colloid Interface Sci; 2022 Apr; 611():215-223. PubMed ID: 34952274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries.
    Liu Y; Zhang A; Shen C; Liu Q; Cao X; Ma Y; Chen L; Lau C; Chen TC; Wei F; Zhou C
    ACS Nano; 2017 Jun; 11(6):5530-5537. PubMed ID: 28530803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activated Amorphous Carbon With High-Porosity Derived From Camellia Pollen Grains as Anode Materials for Lithium/Sodium Ion Batteries.
    Xu K; Li Y; Xiong J; Ou X; Su W; Zhong G; Yang C
    Front Chem; 2018; 6():366. PubMed ID: 30234097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mesoporous Tin-Based Oxide Nanospheres/Reduced Graphene Composites as Advanced Anodes for Lithium-Ion Half/Full Cells and Sodium-Ion Batteries.
    He Y; Li A; Dong C; Li C; Xu L
    Chemistry; 2017 Oct; 23(55):13724-13733. PubMed ID: 28722257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-Layered MoS
    Li Z; Han M; Zhang Y; Yuan F; Fu Y; Yu J
    Adv Sci (Weinh); 2023 May; 10(15):e2207234. PubMed ID: 36950770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An interlayer spacing design approach for efficient sodium ion storage in N-doped MoS
    Wang P; Gou W; Jiang T; Zhao W; Ding K; Sheng H; Liu X; Xu Q; Fan Q
    Nanoscale Horiz; 2023 Mar; 8(4):473-482. PubMed ID: 36786825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced Graphene Oxide-Incorporated SnSb@CNF Composites as Anodes for High-Performance Sodium-Ion Batteries.
    Jia H; Dirican M; Chen C; Zhu J; Zhu P; Yan C; Li Y; Dong X; Guo J; Zhang X
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9696-9703. PubMed ID: 29469565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfur-/Nitrogen-Rich Albumen Derived "Self-Doping" Graphene for Sodium-Ion Storage.
    Li S; Li Z; Cao G; Ling M; Ji J; Zhao D; Sha Y; Gao X; Liang C
    Chemistry; 2019 Nov; 25(63):14358-14363. PubMed ID: 31423674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TiO₂ Nanobelt@Co₉S₈ Composites as Promising Anode Materials for Lithium and Sodium Ion Batteries.
    Zhou Y; Zhu Q; Tian J; Jiang F
    Nanomaterials (Basel); 2017 Sep; 7(9):. PubMed ID: 28869498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-situ self-assembled hollow urchins F-Co-MOF on rGO as advanced anodes for lithium-ion and sodium-ion batteries.
    Wei R; Dong Y; Zhang Y; Zhang R; Al-Tahan MA; Zhang J
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):236-245. PubMed ID: 32823125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. S-Doped Carbon Fibers Uniformly Embedded with Ultrasmall TiO
    Chen C; Li P; Wang T; Wang S; Zhang M
    Small; 2019 Sep; 15(38):e1902201. PubMed ID: 31318168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemically Bonding NiFe-LDH Nanosheets on rGO for Superior Lithium-Ion Capacitors.
    Tian M; Liu C; Neale ZG; Zheng J; Long D; Cao G
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35977-35986. PubMed ID: 31497941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.