These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35398767)
1. Controlling anisotropic thermal properties of graphene aerogel by compressive strain. Guo X; Cheng S; Xu K; Yan B; Li Y; Cai W; Cai J; Xu B; Zhou Y; Zhang Y; Zhang XA J Colloid Interface Sci; 2022 Aug; 619():369-376. PubMed ID: 35398767 [TBL] [Abstract][Full Text] [Related]
2. Free-standing graphene aerogel with improved through-plane thermal conductivity after being annealed at high temperature. Guo X; Cheng S; Yan B; Li Y; Huang R; Li J; Cai W; Zhang Y; Zhou Y; Zhang XA J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2407-2413. PubMed ID: 34753625 [TBL] [Abstract][Full Text] [Related]
3. Mechanically Strong, Low Thermal Conductivity and Improved Thermal Stability Polyvinyl Alcohol-Graphene-Nanocellulose Aerogel. Wang X; Xie P; Wan K; Miao Y; Liu Z; Li X; Wang C Gels; 2021 Oct; 7(4):. PubMed ID: 34698206 [TBL] [Abstract][Full Text] [Related]
4. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials. Dai W; Ma T; Yan Q; Gao J; Tan X; Lv L; Hou H; Wei Q; Yu J; Wu J; Yao Y; Du S; Sun R; Jiang N; Wang Y; Kong J; Wong C; Maruyama S; Lin CT ACS Nano; 2019 Oct; 13(10):11561-11571. PubMed ID: 31550125 [TBL] [Abstract][Full Text] [Related]
5. Graphitized-rGO/Polyimide Aerogel as the Compressible Thermal Interface Material with Both High In-Plane and Through-Plane Thermal Conductivities. Lv P; Cheng H; Ji C; Wei W Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946600 [TBL] [Abstract][Full Text] [Related]
6. Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. Song J; Chen C; Yang Z; Kuang Y; Li T; Li Y; Huang H; Kierzewski I; Liu B; He S; Gao T; Yuruker SU; Gong A; Yang B; Hu L ACS Nano; 2018 Jan; 12(1):140-147. PubMed ID: 29257663 [TBL] [Abstract][Full Text] [Related]
7. Ultralight Ceramic Fiber Aerogel for High-Temperature Thermal Superinsulation. Liu F; He C; Jiang Y; Feng J; Li L; Tang G; Feng J Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110890 [TBL] [Abstract][Full Text] [Related]
8. Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through-Plane Conductivity of 3D Hybridized Structure. Li Y; Zhu Y; Jiang G; Cano ZP; Yang J; Wang J; Liu J; Chen X; Chen Z Small; 2020 Feb; 16(8):e1903315. PubMed ID: 31999051 [TBL] [Abstract][Full Text] [Related]
9. An All-Ceramic, Anisotropic, and Flexible Aerogel Insulation Material. An L; Wang J; Petit D; Armstrong JN; Hanson K; Hamilton J; Souza M; Zhao D; Li C; Liu Y; Huang Y; Hu Y; Li Z; Shao Z; Desjarlais AO; Ren S Nano Lett; 2020 May; 20(5):3828-3835. PubMed ID: 32267711 [TBL] [Abstract][Full Text] [Related]
10. Anderson Localization of Phonons in Thermally Superinsulating Graphene Aerogels with Metal-Like Electrical Conductivity. Šilhavík M; Kumar P; Levinský P; Zafar ZA; Hejtmánek J; Červenka J Small Methods; 2024 Sep; 8(9):e2301536. PubMed ID: 38577909 [TBL] [Abstract][Full Text] [Related]
11. Improving the comprehensive properties of chitosan-based thermal insulation aerogels by introducing a biobased epoxy thermoset to form an anisotropic honeycomb-layered structure. Zhang C; Song S; Cao Q; Li J; Liu Q; Zhang S; Jian X; Weng Z Int J Biol Macromol; 2023 Aug; 246():125616. PubMed ID: 37391003 [TBL] [Abstract][Full Text] [Related]
12. Ultralight, Ultraflexible, Anisotropic, Highly Thermally Conductive Graphene Aerogel Films. Liu Z; Wang Q; Hou L; Liu Y; Li Z Molecules; 2021 Nov; 26(22):. PubMed ID: 34833959 [TBL] [Abstract][Full Text] [Related]
13. Facile Preparation of a Novel HfC Aerogel with Low Thermal Conductivity and Excellent Mechanical Properties. Wang W; Wu Z; Song S; You Q; Cui S; Shen W; Wang G; Zhang X; Zhu X Gels; 2023 Oct; 9(10):. PubMed ID: 37888412 [TBL] [Abstract][Full Text] [Related]
14. A Molecular Dynamics Simulation Study of In- and Cross-Plane Thermal Conductivity of Bilayer Graphene. Mohammadi R; Ghaderi MR; Hajian E Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895695 [TBL] [Abstract][Full Text] [Related]
15. A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material. Lv L; Ying J; Chen L; Tao P; Sun L; Yang K; Fu L; Yu J; Yan Q; Dai W; Jiang N; Lin CT Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903671 [TBL] [Abstract][Full Text] [Related]
16. A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods. Dai W; Lv L; Lu J; Hou H; Yan Q; Alam FE; Li Y; Zeng X; Yu J; Wei Q; Xu X; Wu J; Jiang N; Du S; Sun R; Xu J; Wong CP; Lin CT ACS Nano; 2019 Feb; 13(2):1547-1554. PubMed ID: 30726676 [TBL] [Abstract][Full Text] [Related]
17. Unraveling High Thermal Conductivity with In-Plane Anisotropy Observed in Suspended SiP Dai X; Qiu C; Bi X; Sui C; Chen P; Qin F; Yuan H ACS Appl Mater Interfaces; 2024 Mar; 16(11):13980-13988. PubMed ID: 38446715 [TBL] [Abstract][Full Text] [Related]
18. Thermal Insulation Performance of SiC-Doped Silica Aerogels under Large Temperature and Air Pressure Differences. Zhang SN; Pang HQ; Fan TH; Ye Q; Cai QL; Wu X Gels; 2022 May; 8(5):. PubMed ID: 35621618 [TBL] [Abstract][Full Text] [Related]
19. Scalable Compliant Graphene Fiber-Based Thermal Interface Material with Metal-Level Thermal Conductivity via Dual-Field Synergistic Alignment Engineering. Lu J; Ming X; Cao M; Liu Y; Wang B; Shi H; Hao Y; Zhang P; Li K; Wang L; Li P; Gao W; Cai S; Sun B; Yu ZZ; Xu Z; Gao C ACS Nano; 2024 Jul; 18(28):18560-18571. PubMed ID: 38941591 [TBL] [Abstract][Full Text] [Related]
20. Preparation and properties of phase-change materials with enhanced radial thermal conductivities based on anisotropic graphene aerogels. Huang J; Sun X; Liang B; Li Z; Zheng D; Yang B; Xu J; Zhu Y RSC Adv; 2024 Jan; 14(4):2763-2769. PubMed ID: 38229720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]