These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 35398770)
1. Non-flammable fluorobenzene-diluted highly concentrated electrolytes enable high-performance Li-metal and Li-ion batteries. Liu M; Zeng Z; Zhong W; Ge Z; Li L; Lei S; Wu Q; Zhang H; Cheng S; Xie J J Colloid Interface Sci; 2022 Aug; 619():399-406. PubMed ID: 35398770 [TBL] [Abstract][Full Text] [Related]
2. Nonflammable Localized High-Concentration Electrolytes with Long-Term Cycling Stability for High-Performance Li Metal Batteries. Xu Z; Deng K; Zhou S; Liu Z; Guan X; Mo D ACS Appl Mater Interfaces; 2022 Nov; 14(43):48694-48704. PubMed ID: 36279165 [TBL] [Abstract][Full Text] [Related]
3. Double-Salts Super Concentrated Carbonate Electrolyte Boosting Electrochemical Performance of Ni-Rich LiNi Yang Q; Liu Q; Tan G; Li L; Chen R; Wu F Small; 2024 Aug; 20(32):e2311650. PubMed ID: 38764187 [TBL] [Abstract][Full Text] [Related]
4. Tri-anion solvation structure electrolyte improves the electrochemical performance of Li||LiNi0.8Co0.1Mn0.1O2 batteries. Huang L; Sun M; Xie Y; Huang H; Huang Y; Chen H; Liu S; Dai P; Huang R; Sun S ChemSusChem; 2024 Jul; ():e202401029. PubMed ID: 39075647 [TBL] [Abstract][Full Text] [Related]
5. Stable Cycling of High-Voltage Lithium-Metal Batteries Enabled by High-Concentration FEC-Based Electrolyte. Wang W; Zhang J; Yang Q; Wang S; Wang W; Li B ACS Appl Mater Interfaces; 2020 May; 12(20):22901-22909. PubMed ID: 32348668 [TBL] [Abstract][Full Text] [Related]
6. Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries. Fu S; Xie X; Huangyang X; Yang L; Zeng X; Ma Q; Wu X; Xiao M; Wu Y Molecules; 2023 May; 28(10):. PubMed ID: 37241847 [TBL] [Abstract][Full Text] [Related]
7. Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries. Cheng F; Zhang X; Wei P; Sun S; Xu Y; Li Q; Fang C; Han J; Huang Y Sci Bull (Beijing); 2022 Nov; 67(21):2225-2234. PubMed ID: 36545998 [TBL] [Abstract][Full Text] [Related]
8. LiF-Rich Electrode-Electrolyte Interfaces Enabled by Bifunctional Electrolyte Additive to Achieve High-Performance Li/LiNi Lei Y; Xu X; Yin J; Xu J; Xi K; Wei L; Wu H; Jiang S; Gao Y ACS Appl Mater Interfaces; 2023 Oct; 15(40):46941-46951. PubMed ID: 37782685 [TBL] [Abstract][Full Text] [Related]
9. High-Concentrated Binary-Salt Ether Electrolytes for High-Voltage Lithium Metal Batteries with Ni-Rich Cathode. Li Z; Chen X; Li W; Li J; Zhang Y; Lu L; Luo Y; Zhang C; Gao F; Liu J; Zhan C; Qiu X ACS Appl Mater Interfaces; 2024 Jul; 16(28):37288-37297. PubMed ID: 38953553 [TBL] [Abstract][Full Text] [Related]
10. Concentrated Electrolytes Widen the Operating Temperature Range of Lithium-Ion Batteries. Wang J; Zheng Q; Fang M; Ko S; Yamada Y; Yamada A Adv Sci (Weinh); 2021 Sep; 8(18):e2101646. PubMed ID: 34296534 [TBL] [Abstract][Full Text] [Related]
11. Approaching the maximum capacity of nickel-rich LiNi Pham HQ; Hwang EH; Kwon YG; Song SW Chem Commun (Camb); 2019 Jan; 55(9):1256-1258. PubMed ID: 30632566 [TBL] [Abstract][Full Text] [Related]
12. Constructing LiF/Li Hu X; Li Y; Liu J; Wang Z; Bai Y; Ma J Sci Bull (Beijing); 2023 Jun; 68(12):1295-1305. PubMed ID: 37246033 [TBL] [Abstract][Full Text] [Related]
13. Formulating compatible non-flammable electrolyte for lithium-ion batteries with ethoxy (pentafluoro) cyclotriphosphazene. Liu Y; Lu J; Gong X; Liu J; Chen B; Wu C; Fang Z RSC Adv; 2024 Apr; 14(16):11533-11540. PubMed ID: 38601706 [TBL] [Abstract][Full Text] [Related]
14. A Competitive Solvation of Ternary Eutectic Electrolytes Tailoring the Electrode/Electrolyte Interphase for Lithium Metal Batteries. Wu W; Liang Y; Li D; Bo Y; Wu D; Ci L; Li M; Zhang J ACS Nano; 2022 Sep; 16(9):14558-14568. PubMed ID: 36040142 [TBL] [Abstract][Full Text] [Related]
15. Advanced Nonflammable Organic Electrolyte Promises Safer Li-Metal Batteries: From Solvation Structure Perspectives. Yuan S; Ding K; Zeng X; Bin D; Zhang Y; Dong P; Wang Y Adv Mater; 2023 Mar; 35(13):e2206228. PubMed ID: 36004772 [TBL] [Abstract][Full Text] [Related]
16. Regulating the Solvation Structure of Nonflammable Electrolyte for Dendrite-Free Li-Metal Batteries. Zhang T; Li Y; Chen N; Wen Z; Shang Y; Zhao Y; Yan M; Guan M; Wu F; Chen R ACS Appl Mater Interfaces; 2021 Jan; 13(1):681-687. PubMed ID: 33398985 [TBL] [Abstract][Full Text] [Related]
17. Commercially Viable Hybrid Li-Ion/Metal Batteries with High Energy Density Realized by Symbiotic Anode and Prelithiated Cathode. Lin K; Xu X; Qin X; Liu M; Zhao L; Yang Z; Liu Q; Ye Y; Chen G; Kang F; Li B Nanomicro Lett; 2022 Jul; 14(1):149. PubMed ID: 35869171 [TBL] [Abstract][Full Text] [Related]
18. Pre-Solid Electrolyte Interphase-Covered Li Metal Anode with Improved Electro-Chemo-Mechanical Reliability in High-Energy-Density Batteries. Chen X; Shang M; Niu J ACS Appl Mater Interfaces; 2021 Jul; 13(29):34064-34073. PubMed ID: 34264650 [TBL] [Abstract][Full Text] [Related]
19. Achieving Uniform Li Deposition and Suppressed Electrolyte Flammability in Li-Metal Batteries via Designing Localized High-Concentration Electrolytes. Wang X; Huang H; Zhang H; Dong Q; Zhang W; Gao M; Li J; Chen B; Guo H; Han X Small; 2024 Aug; 20(35):e2401100. PubMed ID: 38721947 [TBL] [Abstract][Full Text] [Related]
20. High Safety Electrolyte Design for Enabling High Energy-Density System of LiNi Fang S; Han C; Zhang S; Cao Y; Ma K; Zhang Y; Han X; Wang J; Sun J Small; 2024 Oct; 20(40):e2401204. PubMed ID: 38801305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]