BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35398963)

  • 1. PPVED: A machine learning tool for predicting the effect of single amino acid substitution on protein function in plants.
    Gou X; Feng X; Shi H; Guo T; Xie R; Liu Y; Wang Q; Li H; Yang B; Chen L; Lu Y
    Plant Biotechnol J; 2022 Jul; 20(7):1417-1431. PubMed ID: 35398963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNPdbe: constructing an nsSNP functional impacts database.
    Schaefer C; Meier A; Rost B; Bromberg Y
    Bioinformatics; 2012 Feb; 28(4):601-2. PubMed ID: 22210871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective judgment predicts disease-associated single nucleotide variants.
    Capriotti E; Altman RB; Bromberg Y
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S2. PubMed ID: 23819846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bioinformatics approach for the phenotype prediction of nonsynonymous single nucleotide polymorphisms in human cytochromes P450.
    Wang LL; Li Y; Zhou SF
    Drug Metab Dispos; 2009 May; 37(5):977-91. PubMed ID: 19204079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models.
    Shihab HA; Gough J; Cooper DN; Stenson PD; Barker GL; Edwards KJ; Day IN; Gaunt TR
    Hum Mutat; 2013 Jan; 34(1):57-65. PubMed ID: 23033316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.
    Kumar P; Henikoff S; Ng PC
    Nat Protoc; 2009; 4(7):1073-81. PubMed ID: 19561590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIFT: Predicting amino acid changes that affect protein function.
    Ng PC; Henikoff S
    Nucleic Acids Res; 2003 Jul; 31(13):3812-4. PubMed ID: 12824425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Analysis of Missense Variants of G Protein-Coupled Receptors Involved in the Neuroendocrine Regulation of Reproduction.
    Min L; Nie M; Zhang A; Wen J; Noel SD; Lee V; Carroll RS; Kaiser UB
    Neuroendocrinology; 2016; 103(3-4):230-9. PubMed ID: 26088945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CoDP: predicting the impact of unclassified genetic variants in MSH6 by the combination of different properties of the protein.
    Terui H; Akagi K; Kawame H; Yura K
    J Biomed Sci; 2013 Apr; 20(1):25. PubMed ID: 23621914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation.
    Tang H; Thomas PD
    Bioinformatics; 2016 Jul; 32(14):2230-2. PubMed ID: 27193693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SIFT web server: predicting effects of amino acid substitutions on proteins.
    Sim NL; Kumar P; Hu J; Henikoff S; Schneider G; Ng PC
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W452-7. PubMed ID: 22689647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promzea: a pipeline for discovery of co-regulatory motifs in maize and other plant species and its application to the anthocyanin and phlobaphene biosynthetic pathways and the Maize Development Atlas.
    Liseron-Monfils C; Lewis T; Ashlock D; McNicholas PD; Fauteux F; Strömvik M; Raizada MN
    BMC Plant Biol; 2013 Mar; 13():42. PubMed ID: 23497159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Silico Analyses of Nonsynonymous Variants in the BRCA1 Gene.
    Arshad S; Ishaque I; Mumtaz S; Rashid MU; Malkani N
    Biochem Genet; 2021 Dec; 59(6):1506-1526. PubMed ID: 33945048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UMD-predictor, a new prediction tool for nucleotide substitution pathogenicity -- application to four genes: FBN1, FBN2, TGFBR1, and TGFBR2.
    Frédéric MY; Lalande M; Boileau C; Hamroun D; Claustres M; Béroud C; Collod-Béroud G
    Hum Mutat; 2009 Jun; 30(6):952-9. PubMed ID: 19370756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants.
    Alirezaie N; Kernohan KD; Hartley T; Majewski J; Hocking TD
    Am J Hum Genet; 2018 Oct; 103(4):474-483. PubMed ID: 30220433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of in silico analysis in predicting the effect of non-synonymous variants in inherited steroid metabolic diseases.
    Chan AO
    Steroids; 2013 Jul; 78(7):726-30. PubMed ID: 23603282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of mutation pathogenicity prediction methods on missense variants.
    Thusberg J; Olatubosun A; Vihinen M
    Hum Mutat; 2011 Apr; 32(4):358-68. PubMed ID: 21412949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening and insilico analysis of deleterious nsSNPs (missense) in human CSF3 for their effects on protein structure, stability and function.
    Guttula PK; Chandrasekaran G; Gupta MK
    Comput Biol Chem; 2019 Oct; 82():57-64. PubMed ID: 31272062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catching hidden variation: systematic correction of reference minor allele annotation in clinical variant calling.
    Barbitoff YA; Bezdvornykh IV; Polev DE; Serebryakova EA; Glotov AS; Glotov OS; Predeus AV
    Genet Med; 2018 Mar; 20(3):360-364. PubMed ID: 29155419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.