These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

648 related articles for article (PubMed ID: 35399146)

  • 1. Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study.
    Hu C; Li L; Huang W; Wu T; Xu Q; Liu J; Hu B
    Infect Dis Ther; 2022 Jun; 11(3):1117-1132. PubMed ID: 35399146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers.
    Zhang G; Shao F; Yuan W; Wu J; Qi X; Gao J; Shao R; Tang Z; Wang T
    Eur J Med Res; 2024 Mar; 29(1):156. PubMed ID: 38448999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.
    Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S
    Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury.
    Wen C; Zhang X; Li Y; Xiao W; Hu Q; Lei X; Xu T; Liang S; Gao X; Zhang C; Yu Z; Lü M
    PLoS One; 2024; 19(5):e0303469. PubMed ID: 38768153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.
    Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M
    Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early prognosis prediction for non-variceal upper gastrointestinal bleeding in the intensive care unit: based on interpretable machine learning.
    Zhao X; Wei S; Pan Y; Qu K; Yan G; Wang X; Song Y
    Eur J Med Res; 2024 Aug; 29(1):442. PubMed ID: 39217369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of interpretable machine learning for early prediction of prognosis in acute kidney injury.
    Hu C; Tan Q; Zhang Q; Li Y; Wang F; Zou X; Peng Z
    Comput Struct Biotechnol J; 2022; 20():2861-2870. PubMed ID: 35765651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of an interpretable machine learning for mortality prediction in patients with sepsis.
    He B; Qiu Z
    Front Artif Intell; 2024; 7():1348907. PubMed ID: 39040922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation.
    Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S
    Front Neurol; 2023; 14():1185447. PubMed ID: 37614971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach.
    Fan Z; Jiang J; Xiao C; Chen Y; Xia Q; Wang J; Fang M; Wu Z; Chen F
    J Transl Med; 2023 Jun; 21(1):406. PubMed ID: 37349774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretable Machine Learning to Optimize Early In-Hospital Mortality Prediction for Elderly Patients with Sepsis: A Discovery Study.
    Ke X; Zhang F; Huang G; Wang A
    Comput Math Methods Med; 2022; 2022():4820464. PubMed ID: 36570336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study.
    Tang D; Ma C; Xu Y
    Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Validation of an Interpretable Machine Learning Model for Early Prognosis Prediction in ICU Patients with Malignant Tumors and Hyperkalemia.
    Bu ZJ; Jiang N; Li KC; Lu ZL; Zhang N; Yan SS; Chen ZL; Hao YH; Zhang YH; Xu RB; Chi HW; Chen ZY; Liu JP; Wang D; Xu F; Liu ZL
    Medicine (Baltimore); 2024 Jul; 103(30):e38747. PubMed ID: 39058887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explainable Machine-Learning Model for Prediction of In-Hospital Mortality in Septic Patients Requiring Intensive Care Unit Readmission.
    Hu C; Li L; Li Y; Wang F; Hu B; Peng Z
    Infect Dis Ther; 2022 Aug; 11(4):1695-1713. PubMed ID: 35835943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning-based prediction of in-hospital mortality for critically ill patients with sepsis-associated acute kidney injury.
    Gao T; Nong Z; Luo Y; Mo M; Chen Z; Yang Z; Pan L
    Ren Fail; 2024 Dec; 46(1):2316267. PubMed ID: 38369749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury.
    Li X; Wu R; Zhao W; Shi R; Zhu Y; Wang Z; Pan H; Wang D
    Sci Rep; 2023 Mar; 13(1):5223. PubMed ID: 36997585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study.
    Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J
    J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early prediction of mortality at sepsis diagnosis time in critically ill patients by using interpretable machine learning.
    Cheng YW; Kuo PC; Chen SH; Kuo YT; Liu TL; Chan WS; Chan KC; Yeh YC
    J Clin Monit Comput; 2024 Apr; 38(2):271-279. PubMed ID: 38150124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit.
    Huang T; Le D; Yuan L; Xu S; Peng X
    PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Machine-Learning Approach for Dynamic Prediction of Sepsis-Induced Coagulopathy in Critically Ill Patients With Sepsis.
    Zhao QY; Liu LP; Luo JC; Luo YW; Wang H; Zhang YJ; Gui R; Tu GW; Luo Z
    Front Med (Lausanne); 2020; 7():637434. PubMed ID: 33553224
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 33.