These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3539921)

  • 21. Regulation of beta-galactoside phosphate accumulation in Streptococcus pyogenes by an expulsion mechanism.
    Reizer J; Panos C
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5497-501. PubMed ID: 7001481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iodoacetate action on endocytic uptake of different fluid-phase markers by OK renal epithelial cells.
    Kempson SA; Kunkler KJ; Murer H
    Biochim Biophys Acta; 1991 Feb; 1091(3):324-8. PubMed ID: 2001415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis.
    Thiel T
    J Bacteriol; 1988 Mar; 170(3):1143-7. PubMed ID: 3125150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anthranilate-promoted iron uptake in Rhizobium leguminosarum.
    Rioux CR; Jordan DC; Rattray JB
    Arch Biochem Biophys; 1986 Jul; 248(1):183-9. PubMed ID: 3729414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibitors of glycolytic metabolism affect neurulation-staged mouse conceptuses in vitro.
    Hunter ES; Tugman JA
    Teratology; 1995 Dec; 52(6):317-23. PubMed ID: 8711618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli.
    Willsky GR; Malamy MH
    J Bacteriol; 1980 Oct; 144(1):356-65. PubMed ID: 6998957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of sodium ions and potassium ions on glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors.
    Eddy AA; Mulcahy MF; Thomson PJ
    Biochem J; 1967 Jun; 103(3):863-76. PubMed ID: 6072273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial phosphate transport during nutrient stimulation of INS-1E insulinoma cells.
    Quan X; Das R; Xu S; Cline GW; Wiederkehr A; Wollheim CB; Park KS
    Mol Cell Endocrinol; 2013 Dec; 381(1-2):198-209. PubMed ID: 23939247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphate/hexose 6-phosphate antiport in Streptococcus lactis.
    Maloney PC; Ambudkar SV; Thomas J; Schiller L
    J Bacteriol; 1984 Apr; 158(1):238-45. PubMed ID: 6325388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sodium-phosphate cotransport in human red blood cells. Kinetics and role in membrane metabolism.
    Shoemaker DG; Bender CA; Gunn RB
    J Gen Physiol; 1988 Oct; 92(4):449-74. PubMed ID: 3204363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of glycolysis inhibitors on the radiation response of CHO-K1 cells.
    Seymour CB; Mothersill C
    Radiat Environ Biophys; 1988; 27(1):49-57. PubMed ID: 3353494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of valinomycin on hexose transport and cellular ATP pools in mouse fibroblasts.
    Yamanishi K
    J Cell Physiol; 1984 May; 119(2):163-71. PubMed ID: 6715414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expulsion mechanism of xylitol 5-phosphate in Streptococcus mutans.
    Pihlanto-Leppälä A; Söderling E; Mäkinen KK
    Scand J Dent Res; 1990 Apr; 98(2):112-9. PubMed ID: 2160725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of blood collection tubes for glucose measurement using adenosine 3-phosphate and sodium fluoride as glycolytic inhibitors.
    Kume Y; Hirowatari Y; Kurano M; Yatomi Y; Matsushita M
    Ann Clin Biochem; 2024 Mar; 61(2):90-97. PubMed ID: 37525536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic properties of a phosphate-bond-driven glutamate-glutamine transport system in Streptococcus lactis and Streptococcus cremoris.
    Poolman B; Smid EJ; Konings WN
    J Bacteriol; 1987 Jun; 169(6):2755-61. PubMed ID: 3584068
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycolysis is necessary to preserve myocardial Ca2+ homeostasis during beta-adrenergic stimulation.
    Nakamura K; Kusuoka H; Ambrosio G; Becker LC
    Am J Physiol; 1993 Mar; 264(3 Pt 2):H670-8. PubMed ID: 8384419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of phosphate in the central metabolism of two lactic acid bacteria--a comparative systems biology approach.
    Levering J; Musters MW; Bekker M; Bellomo D; Fiedler T; de Vos WM; Hugenholtz J; Kreikemeyer B; Kummer U; Teusink B
    FEBS J; 2012 Apr; 279(7):1274-90. PubMed ID: 22325620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphate depletion in opossum kidney cells: apical but not basolateral or transepithelial adaptions of Pi transport.
    Barac-Nieto M; Alfred M; Spitzer A
    Exp Nephrol; 2001; 9(4):258-64. PubMed ID: 11423725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A fast sensor for in vivo quantification of cytosolic phosphate in Saccharomyces cerevisiae.
    Zhang J; Sassen T; ten Pierick A; Ras C; Heijnen JJ; Wahl SA
    Biotechnol Bioeng; 2015 May; 112(5):1033-46. PubMed ID: 25502731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resveratrol mainly stimulates the glycolytic ATP synthesis flux and not the mitochondrial one: a saturation transfer NMR study in perfused and isolated rat liver.
    Beauvieux MC; Stephant A; Gin H; Serhan N; Couzigou P; Gallis JL
    Pharmacol Res; 2013 Dec; 78():11-7. PubMed ID: 24090928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.