BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35400209)

  • 1. A facile way to construct Sr-doped apatite coating on the surface of 3D printed scaffolds to improve osteogenic effect.
    Chen S; Wang Y; Ma J
    J Biomater Appl; 2022 Aug; 37(2):344-354. PubMed ID: 35400209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration.
    Zhang J; Zhao S; Zhu Y; Huang Y; Zhu M; Tao C; Zhang C
    Acta Biomater; 2014 May; 10(5):2269-81. PubMed ID: 24412143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing of strontium-doped hydroxyapatite based composite scaffolds for repairing critical-sized rabbit calvarial defects.
    Luo Y; Chen S; Shi Y; Ma J
    Biomed Mater; 2018 Aug; 13(6):065004. PubMed ID: 30091422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and in vitro evaluation of 3D printed porous silicate substituted calcium phosphate scaffolds for bone tissue engineering.
    Chen D; Chen G; Zhang X; Chen J; Li J; Kang K; He W; Kong Y; Wu L; Su B; Zhao K; Si D; Wang X
    Biotechnol Bioeng; 2022 Nov; 119(11):3297-3310. PubMed ID: 35923072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of strontium-containing on the properties of Mg-doped wollastonite bioceramic scaffolds.
    Wang S; Liu L; Zhou X; Yang D; Shi Z; Hao Y
    Biomed Eng Online; 2019 Dec; 18(1):119. PubMed ID: 31829229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.
    Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U
    Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxymethyl carrageenan immobilized on 3D-printed polycaprolactone scaffold for the adsorption of calcium phosphate/strontium phosphate adapted to bone regeneration.
    Ataie M; Nourmohammadi J; Seyedjafari E
    Int J Biol Macromol; 2022 May; 206():861-874. PubMed ID: 35314263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.
    Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C
    Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A natural biomineral for enhancing the biomineralization and cell response of 3D printed polylactic acid bone scaffolds.
    Guo F; Wang E; Yang Y; Mao Y; Liu C; Bu W; Li P; Zhao L; Jin Q; Liu B; Wang S; You H; Long Y; Zhou N; Guo W
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124728. PubMed ID: 37150372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects.
    Zhao S; Zhang J; Zhu M; Zhang Y; Liu Z; Tao C; Zhu Y; Zhang C
    Acta Biomater; 2015 Jan; 12():270-280. PubMed ID: 25449915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printed concentrated alginate/GelMA hollow-fibers-packed scaffolds with nano apatite coatings for bone tissue engineering.
    Luo Y; Chen B; Zhang X; Huang S; Wa Q
    Int J Biol Macromol; 2022 Mar; 202():366-374. PubMed ID: 35063479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding.
    Pina S; Canadas RF; Jiménez G; Perán M; Marchal JA; Reis RL; Oliveira JM
    Cells Tissues Organs; 2017; 204(3-4):150-163. PubMed ID: 28803246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating.
    Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J
    J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering.
    Chen M; Zhao F; Li Y; Wang M; Chen X; Lei B
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110153. PubMed ID: 31753368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodontal tissue engineering using an apatite/collagen scaffold obtained by a plasma- and precursor-assisted biomimetic process.
    Kanemoto Y; Miyaji H; Nishida E; Miyata S; Mayumi K; Yoshino Y; Kato A; Sugaya T; Akasaka T; Nathanael AJ; Santhakumar S; Oyane A
    J Periodontal Res; 2022 Jan; 57(1):205-218. PubMed ID: 34786723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization.
    Liu X; George MN; Park S; Miller Ii AL; Gaihre B; Li L; Waletzki BE; Terzic A; Yaszemski MJ; Lu L
    Acta Biomater; 2020 Jul; 111():129-140. PubMed ID: 32428680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.