These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35400261)

  • 1. Control strategy for intraspinal microstimulation based on central pattern generator.
    Lou X; Wu Y; Lu S; Shen X
    Comput Methods Biomech Biomed Engin; 2023 Feb; 26(3):305-314. PubMed ID: 35400261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central pattern generator network model for the alternating hind limb gait of rats based on the modified Van der Pol equation.
    Shen X; Wu Y; Lou X; Li Z; Ma L; Bian X
    Med Biol Eng Comput; 2023 Feb; 61(2):555-566. PubMed ID: 36538267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait regulation of hindlimb based on central pattern generator in rats with a spinal cord injury.
    Shen X; Lou X; Shao W; Li Z; Wu Y; Lu S
    Proc Inst Mech Eng H; 2022 Jul; 236(7):979-987. PubMed ID: 35485442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless control of intraspinal microstimulation in a rodent model of paralysis.
    Grahn PJ; Lee KH; Kasasbeh A; Mallory GW; Hachmann JT; Dube JR; Kimble CJ; Lobel DA; Bieber A; Jeong JH; Bennet KE; Lujan JL
    J Neurosurg; 2015 Jul; 123(1):232-242. PubMed ID: 25479124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra-spinal microstimulation may alleviate chronic pain after spinal cord injury.
    Shu B; Yang F; Guan Y
    Med Hypotheses; 2017 Jul; 104():73-77. PubMed ID: 28673596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury.
    Mercier LM; Gonzalez-Rothi EJ; Streeter KA; Posgai SS; Poirier AS; Fuller DD; Reier PJ; Baekey DM
    J Neurophysiol; 2017 Feb; 117(2):767-776. PubMed ID: 27881723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D map of the hindlimb motor representation in the lumbar spinal cord in Sprague Dawley rats.
    Borrell JA; Frost SB; Peterson J; Nudo RJ
    J Neural Eng; 2017 Feb; 14(1):016007. PubMed ID: 27934789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation.
    Lau B; Guevremont L; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):273-85. PubMed ID: 17601198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements.
    Mushahwar VK; Gillard DM; Gauthier MJ; Prochazka A
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):68-81. PubMed ID: 12173741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraspinal microstimulation produces over-ground walking in anesthetized cats.
    Holinski BJ; Mazurek KA; Everaert DG; Toossi A; Lucas-Osma AM; Troyk P; Etienne-Cummings R; Stein RB; Mushahwar VK
    J Neural Eng; 2016 Oct; 13(5):056016. PubMed ID: 27619069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Study of Intraspinal Microstimulation and Epidural Spinal Cord Stimulation.
    Tao C; Shen X; Ma L; Shen J; Li Z; Wang Z; Lu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3795-3798. PubMed ID: 31946700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity dependent stimulation increases synaptic efficacy in spared pathways in an anesthetized rat model of spinal cord contusion injury.
    Borrell JA; Krizsan-Agbas D; Nudo RJ; Frost SB
    Restor Neurol Neurosci; 2022; 40(1):17-33. PubMed ID: 35213336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional Map of Lumbar Spinal Cord Motor Function for Intraspinal Microstimulation in Rats.
    Tao C; Shen X; Ma L; Li Z; Shen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3525-3528. PubMed ID: 33018764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Measuring functional core regions of hindlimb movement control in the rat spinal cord with intraspinal microstimulation].
    Chen Y; Ma L; Du W; Shen X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2017 Aug; 34(4):622-626. PubMed ID: 29745562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced spinal cord microstimulation using conducting polymer-coated carbon microfibers.
    Vara H; Collazos-Castro JE
    Acta Biomater; 2019 May; 90():71-86. PubMed ID: 30904548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-joint movement of the cat hindlimb evoked by microstimulation of the lumbosacral spinal cord.
    Tai C; Booth AM; Robinson CJ; de Groat WC; Roppolo JR
    Exp Neurol; 2003 Oct; 183(2):620-7. PubMed ID: 14552903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.
    Shahdoost S; Frost S; Van Acker G; DeJong S; Dunham C; Barbay S; Nudo R; Mohseni P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():486-9. PubMed ID: 25570002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive neuro-fuzzy sliding mode control of multi-joint movement using intraspinal microstimulation.
    Asadi AR; Erfanian A
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):499-509. PubMed ID: 22711783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reanimating the arm and hand with intraspinal microstimulation.
    Zimmermann JB; Seki K; Jackson A
    J Neural Eng; 2011 Oct; 8(5):054001. PubMed ID: 21828907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraspinal microstimulation generates functional movements after spinal-cord injury.
    Saigal R; Renzi C; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2004 Dec; 12(4):430-40. PubMed ID: 15614999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.