These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35400454)
1. Time-series based metabolomics reveals the characteristics of the color-related metabolites during the different coloration stages of Zanthoxylum bungeanum peel. Wang C; Han F; Chen X; Zhao A; Wang D Food Res Int; 2022 May; 155():111077. PubMed ID: 35400454 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomics integrated with metabolomics to characterize key pigment compounds and genes related to anthocyanin biosynthesis in Zanthoxylum bungeanum peel. Han N; Sun L; Zhang J; Yuan W; Wang C; Zhao A; Wang D Physiol Plant; 2023; 175(5):e14031. PubMed ID: 37882301 [TBL] [Abstract][Full Text] [Related]
3. Regulation mechanisms of flavonoids biosynthesis of Hancheng Dahongpao peels (Zanthoxylum bungeanum Maxim) at different development stages by integrated metabolomics and transcriptomics analysis. Zheng T; Han J; Su KX; Sun BY; Liu SM BMC Plant Biol; 2022 May; 22(1):251. PubMed ID: 35596133 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome and metabolome analyses reveal the regulation of peel coloration in green, red Chinese prickly ash ( Zheng T; Zhang Q; Su KX; Liu SM Food Chem (Oxf); 2020 Oct; 1():100004. PubMed ID: 35415618 [TBL] [Abstract][Full Text] [Related]
5. Quality evaluation of different varieties of Zanthoxylum bungeanum Maxim. peels based on phenolic profiles, bioactivity, and HPLC fingerprint. Yu L; Wu W; Pan Y; Wang W; Sun L; Liu Y; Wang D; Li D J Food Sci; 2020 Apr; 85(4):1090-1097. PubMed ID: 32147833 [TBL] [Abstract][Full Text] [Related]
6. Insights into the catalytic and regulatory mechanisms of dihydroflavonol 4-reductase, a key enzyme of anthocyanin synthesis in Zanthoxylum bungeanum. Aiguo Z; Ruiwen D; Cheng W; Cheng C; Dongmei W Tree Physiol; 2023 Jan; 43(1):169-184. PubMed ID: 36054375 [TBL] [Abstract][Full Text] [Related]
7. Comparative Transcriptome Analysis and Expression of Genes Reveal the Biosynthesis and Accumulation Patterns of Key Flavonoids in Different Varieties of Sun L; Yu D; Wu Z; Wang C; Yu L; Wei A; Wang D J Agric Food Chem; 2019 Dec; 67(48):13258-13268. PubMed ID: 31714769 [No Abstract] [Full Text] [Related]
8. [Analysis of metabolite differences in skin between Clapp's Favorite and its mutant Red Clapp's Favorite through non-targeted metabolomics]. Mu H; Ci Z; Aisajan M; Liang Y; Liu X; DU X; Yu Q; Li Q; Li Y Se Pu; 2021 Nov; 39(11):1203-1212. PubMed ID: 34677015 [TBL] [Abstract][Full Text] [Related]
9. Comparative metabolomics analysis of pericarp from four varieties of Cao Y; Ren M; Yang J; Guo L; Lin Y; Wu H; Wang B; Lv R; Zhang C; Gong X; Wang H Bioengineered; 2022 Jun; 13(6):14815-14826. PubMed ID: 36274249 [TBL] [Abstract][Full Text] [Related]
10. The UV-B-Induced Transcription Factor HY5 Regulated Anthocyanin Biosynthesis in Zhou J; Meng J; Zhang S; Chi R; Wang C; Wang D; Li H Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269793 [TBL] [Abstract][Full Text] [Related]
11. Zhang J; Han N; Zhao A; Wang Z; Wang D J Agric Food Chem; 2024 Jul; 72(30):16941-16954. PubMed ID: 39024128 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive identification of non-volatile bitter-tasting compounds in Zanthoxylum bungeanum Maxim. by untargeted metabolomics combined with sensory-guided fractionation technique. Yang Q; Mei X; Wang Z; Chen X; Zhang R; Chen Q; Kan J Food Chem; 2021 Jun; 347():129085. PubMed ID: 33493837 [TBL] [Abstract][Full Text] [Related]
13. Differential Accumulation of Anthocyanins in Yu Z; Liao Y; Teixeira da Silva JA; Yang Z; Duan J Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30241372 [No Abstract] [Full Text] [Related]
14. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Oertel A; Matros A; Hartmann A; Arapitsas P; Dehmer KJ; Martens S; Mock HP Planta; 2017 Aug; 246(2):281-297. PubMed ID: 28664422 [TBL] [Abstract][Full Text] [Related]
15. Comparative metabolomics provides novel insights into the basis of petiole color differences in celery ( Li M; Li J; Tan H; Luo Y; Zhang Y; Chen Q; Wang Y; Lin Y; Zhang Y; Wang X; Tang H J Zhejiang Univ Sci B; 2022 Apr; 23(4):300-314. PubMed ID: 35403385 [TBL] [Abstract][Full Text] [Related]
16. Study on the Metabolic Basis of the Color Formation of Two Color-Presenting Types of Jujube Fruits. Zhou X; Shi Q; Li X; Yuan Z; Yan M; Lu D; Wang Y; Pu X; Wu C Foods; 2024 Aug; 13(17):. PubMed ID: 39272423 [TBL] [Abstract][Full Text] [Related]
17. Integrated Transcriptome and Metabolome Analysis Revealed That Flavonoid Biosynthesis May Dominate the Resistance of Li P; Ruan Z; Fei Z; Yan J; Tang G J Agric Food Chem; 2021 Jun; 69(22):6360-6378. PubMed ID: 34043342 [TBL] [Abstract][Full Text] [Related]
18. SmMYB113 Is a Key Transcription Factor Responsible for Compositional Variation of Anthocyanin and Color Diversity Among Eggplant Peels. Yang G; Li L; Wei M; Li J; Yang F Front Plant Sci; 2022; 13():843996. PubMed ID: 35356109 [TBL] [Abstract][Full Text] [Related]
19. Efficient Approach for the Extraction and Identification of Red Pigment from Chen X; Wei Z; Zhu L; Yuan X; Wei D; Peng W; Wu C Molecules; 2018 May; 23(5):. PubMed ID: 29738434 [TBL] [Abstract][Full Text] [Related]
20. Contribution of anthocyanin pathways to fruit flesh coloration in pitayas. Fan R; Sun Q; Zeng J; Zhang X BMC Plant Biol; 2020 Jul; 20(1):361. PubMed ID: 32736527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]