BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35400455)

  • 1. Effect of optimal-water boiling cooking on the volatile compounds in 26 Japonica rice varieties from China.
    Zhao Q; Xi J; Xu D; Jin Y; Wu F; Tong Q; Xu X
    Food Res Int; 2022 May; 155():111078. PubMed ID: 35400455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absolute contents of aroma-affecting volatiles in cooked rice determined by one-step rice cooking and volatile extraction coupled with standard-addition calibration using HS-SPME/GC-MS.
    Wimonmuang K; Lee YS
    Food Chem; 2024 May; 440():138271. PubMed ID: 38150906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volatile Aroma Compounds in Jasmine Rice as Affected by Degrees of Milling.
    Jinakot I; Jirapakkul W
    J Nutr Sci Vitaminol (Tokyo); 2019; 65(Supplement):S231-S234. PubMed ID: 31619638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative HS-SPME/GC-MS-based metabolomics approach for discriminating selected japonica rice varieties from different regions of China in raw and cooked form.
    Zhao Q; Xi J; Xu D; Jin Y; Wu F; Tong Q; Yin Y; Xu X
    Food Chem; 2022 Aug; 385():132701. PubMed ID: 35320761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aroma profile of rice varieties by a novel SPME method able to maximize 2-acetyl-1-pyrroline and minimize hexanal extraction.
    Dias LG; Duarte GHB; Mariutti LRB; Bragagnolo N
    Food Res Int; 2019 Sep; 123():550-558. PubMed ID: 31285004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of rainfall and altitude on the 2-acetyl-1-pyrroline and volatile compounds profile of black glutinous rice (Thai upland rice).
    Sansenya S; Wechakorn K
    J Sci Food Agric; 2021 Nov; 101(14):5784-5791. PubMed ID: 33792035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC-olfactometry and GC-PFPD.
    Mahattanatawee K; Rouseff RL
    Food Chem; 2014 Jul; 154():1-6. PubMed ID: 24518308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of the rice aroma compound, 2-acetyl-1-pyrroline, in uncooked Khao Dawk Mali 105 brown rice.
    Mahatheeranont S; Keawsa-Ard S; Dumri K
    J Agric Food Chem; 2001 Feb; 49(2):773-9. PubMed ID: 11262027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of volatile aroma compounds in cooked black rice.
    Yang DS; Lee KS; Jeong OY; Kim KJ; Kays SJ
    J Agric Food Chem; 2008 Jan; 56(1):235-40. PubMed ID: 18081248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of volatile organic compounds related to the eating quality of cooked japonica rice.
    Lee YK; Jang S; Koh HJ
    Sci Rep; 2022 Oct; 12(1):18133. PubMed ID: 36307468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aroma chemistry of African Oryza glaberrima and Oryza sativa rice and their interspecific hybrids.
    Cho S; Nuijten E; Shewfelt RL; Kays SJ
    J Sci Food Agric; 2014 Mar; 94(4):727-35. PubMed ID: 23907855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Cooked Nonglutinous Rice Cultivars Based on Flavor Volatiles and Their Change during Storage.
    Yamashita K; Kato N; Sakakibara K; Seguchi A; Kobayashi A; Miyagawa S; Uchimura T
    ACS Omega; 2023 Apr; 8(16):14823-14829. PubMed ID: 37125109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cooking on aroma profiles of Chinese foxtail millet (Setaria italica) and correlation with sensory quality.
    Bi S; Wang A; Wang Y; Xu X; Luo D; Shen Q; Wu J
    Food Chem; 2019 Aug; 289():680-692. PubMed ID: 30955665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative quantitative analysis of headspace volatiles and their association with BADH2 marker in non-basmati scented, basmati and non-scented rice (Oryza sativa L.) cultivars of India.
    Mathure SV; Jawali N; Thengane RJ; Nadaf AB
    Food Chem; 2014 Jan; 142():383-91. PubMed ID: 24001856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of volatiles and odor-active compounds of aromatic rice by OSME analysis and SPME/GC-MS.
    Dias LG; Hacke A; Bergara SF; Villela OV; Mariutti LRB; Bragagnolo N
    Food Res Int; 2021 Apr; 142():110206. PubMed ID: 33773681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cooking method and final core-temperature on cooking loss, lipid oxidation, nucleotide-related compounds and aroma volatiles of Hanwoo brisket.
    Utama DT; Baek KH; Jeong HS; Yoon SK; Joo ST; Lee SK
    Asian-Australas J Anim Sci; 2018 Feb; 31(2):293-300. PubMed ID: 28728407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Changes in Volatiles, Soluble Sugars, and Fatty Acids in Glutinous Rice during Cooking.
    Hu X; Fang C; Lu L; Hu Z; Zhang W; Chen M
    Foods; 2023 Apr; 12(8):. PubMed ID: 37107495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Correlation between 2-Acetyl-1-pyrroline Content, Biological Compounds and Molecular Characterization to the Aroma Intensities of Thai Local Rice.
    Sansenya S; Hua Y; Chumanee S
    J Oleo Sci; 2018 Jul; 67(7):893-904. PubMed ID: 29877224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the volatile compounds of different sorghum cultivars by both GC-MS and HS-GC-IMS.
    Fan X; Jiao X; Liu J; Jia M; Blanchard C; Zhou Z
    Food Res Int; 2021 Feb; 140():109975. PubMed ID: 33648211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC-MS and chemometric methods.
    Xia Q; Mei J; Yu W; Li Y
    Food Res Int; 2017 Jan; 91():103-114. PubMed ID: 28290313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.