These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 35401613)
1. Landscape Genomics Provides Evidence of Ecotypic Adaptation and a Barrier to Gene Flow at Treeline for the Arctic Foundation Species Stunz E; Fetcher N; Lavretsky P; Mohl JE; Tang J; Moody ML Front Plant Sci; 2022; 13():860439. PubMed ID: 35401613 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptomics of an arctic foundation species, tussock cottongrass (Eriophorum vaginatum), during an extreme heat event. Mohl JE; Fetcher N; Stunz E; Tang J; Moody ML Sci Rep; 2020 Jun; 10(1):8990. PubMed ID: 32488082 [TBL] [Abstract][Full Text] [Related]
3. Ecotypic differences in the phenology of the tundra species Parker TC; Tang J; Clark MB; Moody MM; Fetcher N Ecol Evol; 2017 Nov; 7(22):9775-9786. PubMed ID: 29188008 [No Abstract] [Full Text] [Related]
4. Responses of root phenology in ecotypes of Eriophorum vaginatum to transplantation and warming in the Arctic. Ma T; Parker T; Unger S; Gewirtzman J; Fetcher N; Moody ML; Tang J Sci Total Environ; 2022 Jan; 805():149926. PubMed ID: 34543789 [TBL] [Abstract][Full Text] [Related]
5. Effect of growth temperature on photosynthetic capacity and respiration in three ecotypes of Schedlbauer JL; Fetcher N; Hood K; Moody ML; Tang J Ecol Evol; 2018 Apr; 8(7):3711-3725. PubMed ID: 29686852 [TBL] [Abstract][Full Text] [Related]
6. Differential responses of ecotypes to climate in a ubiquitous Arctic sedge: implications for future ecosystem C cycling. Curasi SR; Parker TC; Rocha AV; Moody ML; Tang J; Fetcher N New Phytol; 2019 Jul; 223(1):180-192. PubMed ID: 30883787 [TBL] [Abstract][Full Text] [Related]
7. Beringian sub-refugia revealed in blackfish (Dallia): implications for understanding the effects of Pleistocene glaciations on Beringian taxa and other Arctic aquatic fauna. Campbell MA; Takebayashi N; López JA BMC Evol Biol; 2015 Jul; 15():144. PubMed ID: 26187279 [TBL] [Abstract][Full Text] [Related]
8. Northward displacement of optimal climate conditions for ecotypes of Eriophorum vaginatum L. across a latitudinal gradient in Alaska. McGraw JB; Turner JB; Souther S; Bennington CC; Vavrek MC; Shaver GR; Fetcher N Glob Chang Biol; 2015 Oct; 21(10):3827-35. PubMed ID: 26033529 [TBL] [Abstract][Full Text] [Related]
9. NDVI changes in the Arctic: Functional significance in the moist acidic tundra of Northern Alaska. Jespersen RG; Anderson-Smith M; Sullivan PF; Dial RJ; Welker JM PLoS One; 2023; 18(4):e0285030. PubMed ID: 37115765 [TBL] [Abstract][Full Text] [Related]
10. Long-Term Response of an Arctic Sedge to Climate Change: A Simulation Study. Leadley PW; Reynolds JF Ecol Appl; 1992 Nov; 2(4):323-340. PubMed ID: 27759275 [TBL] [Abstract][Full Text] [Related]
11. Impacts of Arctic Shrubs on Root Traits and Belowground Nutrient Cycles Across a Northern Alaskan Climate Gradient. Chen W; Tape KD; Euskirchen ES; Liang S; Matos A; Greenberg J; Fraterrigo JM Front Plant Sci; 2020; 11():588098. PubMed ID: 33362815 [TBL] [Abstract][Full Text] [Related]
12. Differential ecophysiological response of deciduous shrubs and a graminoid to long-term experimental snow reductions and additions in moist acidic tundra, Northern Alaska. Pattison RR; Welker JM Oecologia; 2014 Feb; 174(2):339-50. PubMed ID: 24052332 [TBL] [Abstract][Full Text] [Related]
13. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic. Bjorkman AD; Vellend M; Frei ER; Henry GH Glob Chang Biol; 2017 Apr; 23(4):1540-1551. PubMed ID: 27391174 [TBL] [Abstract][Full Text] [Related]
14. Clinal variation in stomatal characteristics of an Arctic sedge, Eriophorum vaginatum (Cyperaceae). Peterson CA; Fetcher N; McGraw JB; Bennington CC Am J Bot; 2012 Sep; 99(9):1562-71. PubMed ID: 22922398 [TBL] [Abstract][Full Text] [Related]
15. Small herbivores with big impacts: Tundra voles (Microtus oeconomus) alter post-fire ecosystem dynamics. Steketee JK; Rocha AV; Gough L; Griffin KL; Klupar I; An R; Williamson N; Rowe RJ Ecology; 2022 Jul; 103(7):e3689. PubMed ID: 35324006 [TBL] [Abstract][Full Text] [Related]
16. Plant phenological responses to a long-term experimental extension of growing season and soil warming in the tussock tundra of Alaska. Khorsand Rosa R; Oberbauer SF; Starr G; Parker La Puma I; Pop E; Ahlquist L; Baldwin T Glob Chang Biol; 2015 Dec; 21(12):4520-32. PubMed ID: 26183112 [TBL] [Abstract][Full Text] [Related]
17. Impact of past climate warming on genomic diversity and demographic history of collared lemmings across the Eurasian Arctic. Fedorov VB; Trucchi E; Goropashnaya AV; Waltari E; Whidden SE; Stenseth NC Proc Natl Acad Sci U S A; 2020 Feb; 117(6):3026-3033. PubMed ID: 31988125 [TBL] [Abstract][Full Text] [Related]
18. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition. McLaren JR; Buckeridge KM; van de Weg MJ; Shaver GR; Schimel JP; Gough L Ecology; 2017 May; 98(5):1361-1376. PubMed ID: 28263375 [TBL] [Abstract][Full Text] [Related]
20. Diurnal patterns of CO2 and H2O exchange of the Arctic sedges Eriophorum angustifolium and E. vaginatum (Cyperaceae). Gebauer R; Reynolds J; Tenhunen J Am J Bot; 1998 Apr; 85(4):592. PubMed ID: 21684941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]