These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35401618)

  • 1. Beta-Amylase and Phosphatidic Acid Involved in Recalcitrant Seed Germination of Chinese Chestnut.
    Liu Y; Zhang Y; Zheng Y; Nie X; Wang Y; Yu W; Su S; Cao Q; Qin L; Xing Y
    Front Plant Sci; 2022; 13():828270. PubMed ID: 35401618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of GABA and Vigabatrin on the Germination of Chinese Chestnut Recalcitrant Seeds and Its Implications for Seed Dormancy and Storage.
    Du C; Chen W; Wu Y; Wang G; Zhao J; Sun J; Ji J; Yan D; Jiang Z; Shi S
    Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32260136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic identification and expression of starch and sucrose metabolism genes in the seeds of Chinese chestnut (Castanea mollissima).
    Zhang L; Lin Q; Feng Y; Fan X; Zou F; Yuan DY; Zeng X; Cao H
    J Agric Food Chem; 2015 Jan; 63(3):929-42. PubMed ID: 25537355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melatonin promotes seed germination under salt stress by regulating ABA and GA
    Chen L; Lu B; Liu L; Duan W; Jiang D; Li J; Zhang K; Sun H; Zhang Y; Li C; Bai Z
    Plant Physiol Biochem; 2021 May; 162():506-516. PubMed ID: 33773227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signatures of Selection in the Genomes of Chinese Chestnut (
    LaBonte NR; Zhao P; Woeste K
    Front Plant Sci; 2018; 9():810. PubMed ID: 29988533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm).
    Pieruzzi FP; Dias LL; Balbuena TS; Santa-Catarina C; dos Santos AL; Floh EI
    Ann Bot; 2011 Aug; 108(2):337-45. PubMed ID: 21685432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of physiological traits during development of the recalcitrant seeds of Quercus serrata.
    Xia K; Zhu ZQ
    Plant Biol (Stuttg); 2021 Nov; 23(6):1000-1005. PubMed ID: 34310842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drying temperature affects rice seed vigor via gibberellin, abscisic acid, and antioxidant enzyme metabolism.
    Huang YT; Wu W; Zou WX; Wu HP; Cao DD
    J Zhejiang Univ Sci B; 2020 Oct.; 21(10):796-810. PubMed ID: 33043645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome analysis revealing the potential mechanism of seed germination stimulated by exogenous gibberellin in Fraxinus hupehensis.
    Song Q; Cheng S; Chen Z; Nie G; Xu F; Zhang J; Zhou M; Zhang W; Liao Y; Ye J
    BMC Plant Biol; 2019 May; 19(1):199. PubMed ID: 31092208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular alteration and differential protein profile explain effects of GA
    Lando AP; Viana WG; Vale EM; Santos M; Silveira V; Steiner N
    Physiol Plant; 2020 Jun; 169(2):258-275. PubMed ID: 32065665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis of seed dormancy after rinsing and chilling in ornamental peaches (Prunus persica (L.) Batsch).
    Kanjana W; Suzuki T; Ishii K; Kozaki T; Iigo M; Yamane K
    BMC Genomics; 2016 Aug; 17():575. PubMed ID: 27501791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous SA Affects Rice Seed Germination under Salt Stress by Regulating Na
    Liu Z; Ma C; Hou L; Wu X; Wang D; Zhang L; Liu P
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology, ecophysiology and germination of seeds of the neotropical tree Alibertia patinoi (Rubiaceae).
    Escobar Escobar DF; Torres AM
    Rev Biol Trop; 2013 Jun; 61(2):547-56. PubMed ID: 23885573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds.
    Ye N; Zhu G; Liu Y; Zhang A; Li Y; Liu R; Shi L; Jia L; Zhang J
    J Exp Bot; 2012 Mar; 63(5):1809-22. PubMed ID: 22200664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis.
    Yano R; Kanno Y; Jikumaru Y; Nakabayashi K; Kamiya Y; Nambara E
    Plant Physiol; 2009 Oct; 151(2):641-54. PubMed ID: 19648230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L.
    Li Z; Zhang J; Liu Y; Zhao J; Fu J; Ren X; Wang G; Wang J
    BMC Plant Biol; 2016 Feb; 16():41. PubMed ID: 26860357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Germination of Aesculus hippocastanum seeds following cold-induced dormancy loss can be described in relation to a temperature-dependent reduction in base temperature (T
    Steadman KJ; Pritchard HW
    New Phytol; 2004 Feb; 161(2):415-425. PubMed ID: 33873492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds.
    Chen H; Ruan J; Chu P; Fu W; Liang Z; Li Y; Tong J; Xiao L; Liu J; Li C; Huang S
    Plant J; 2020 Jan; 101(2):310-323. PubMed ID: 31536657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity to high temperature and water stress in recalcitrant Baccaurea ramiflora seeds.
    Wen B; Liu M; Tan Y; Liu Q
    J Plant Res; 2016 Jul; 129(4):637-645. PubMed ID: 26920843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional Differences in Peanut (Arachis hypogaea L.) Seeds at the Freshly Harvested, After-ripening and Newly Germinated Seed Stages: Insights into the Regulatory Networks of Seed Dormancy Release and Germination.
    Xu P; Tang G; Cui W; Chen G; Ma CL; Zhu J; Li P; Shan L; Liu Z; Wan S
    PLoS One; 2020; 15(1):e0219413. PubMed ID: 31899920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.