These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Vacuolar dynamics during the morphogenetic transition in Candida albicans. Veses V; Gow NA FEMS Yeast Res; 2008 Dec; 8(8):1339-48. PubMed ID: 19054134 [TBL] [Abstract][Full Text] [Related]
27. Role of CaBud6p in the polarized growth of Candida albicans. Song Y; Kim JY J Microbiol; 2006 Jun; 44(3):311-9. PubMed ID: 16820761 [TBL] [Abstract][Full Text] [Related]
28. A characterization of pH-regulated dimorphism in Candida albicans. Buffo J; Herman MA; Soll DR Mycopathologia; 1984 Mar; 85(1-2):21-30. PubMed ID: 6374461 [TBL] [Abstract][Full Text] [Related]
29. Ultrastructural localization of anionic sites on the surface of yeast, hyphal and germ-tube forming cells of Candida albicans. Horisberger M; Clerc MF Eur J Cell Biol; 1988 Aug; 46(3):444-52. PubMed ID: 3053174 [TBL] [Abstract][Full Text] [Related]
30. Differential increase in cytoplasmic pH at bud and germ tube formation in Candida albicans: studies of a nongerminative variant. Kaur S; Mishra P Can J Microbiol; 1994 Sep; 40(9):720-3. PubMed ID: 7954107 [TBL] [Abstract][Full Text] [Related]
31. The role of microfilaments and microtubules in apical growth and dimorphism of Candida albicans. Yokoyama K; Kaji H; Nishimura K; Miyaji M J Gen Microbiol; 1990 Jun; 136(6):1067-75. PubMed ID: 2200842 [TBL] [Abstract][Full Text] [Related]
32. Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach. Mech F; Wilson D; Lehnert T; Hube B; Thilo Figge M Cytometry A; 2014 Feb; 85(2):126-39. PubMed ID: 24259441 [TBL] [Abstract][Full Text] [Related]
33. Microtubules and actin cytoskeleton in Cryptococcus neoformans compared with ascomycetous budding and fission yeasts. Kopecká M; Gabriel M; Takeo K; Yamaguchi M; Svoboda A; Ohkusu M; Hata K; Yoshida S Eur J Cell Biol; 2001 Apr; 80(4):303-11. PubMed ID: 11370745 [TBL] [Abstract][Full Text] [Related]
34. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. Zheng X; Wang Y; Wang Y EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502 [TBL] [Abstract][Full Text] [Related]
35. Candida albicans Cyr1, Cap1 and G-actin form a sensor/effector apparatus for activating cAMP synthesis in hyphal growth. Zou H; Fang HM; Zhu Y; Wang Y Mol Microbiol; 2010 Feb; 75(3):579-91. PubMed ID: 19943905 [TBL] [Abstract][Full Text] [Related]