These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3540192)

  • 21. The role of microfilaments and microtubules during pH-regulated morphological transition in Candida albicans.
    Yokoyama K; Kaji H; Nishimura K; Miyaji M
    Microbiology (Reading); 1994 Feb; 140 ( Pt 2)():281-7. PubMed ID: 8180693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional characterization of myosin I tail regions in Candida albicans.
    Oberholzer U; Iouk TL; Thomas DY; Whiteway M
    Eukaryot Cell; 2004 Oct; 3(5):1272-86. PubMed ID: 15470256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulation of neutrophil actin polymerization and degranulation by opsonized and unopsonized Candida albicans hyphae and zymosan.
    Kolotila MP; Diamond RD
    Infect Immun; 1988 Aug; 56(8):2016-22. PubMed ID: 3294183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth.
    Bassilana M; Hopkins J; Arkowitz RA
    Eukaryot Cell; 2005 Mar; 4(3):588-603. PubMed ID: 15755921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative proteome and acidic subproteome profiling of Candida albicans yeast-to-hypha transition.
    Monteoliva L; Martinez-Lopez R; Pitarch A; Hernaez ML; Serna A; Nombela C; Albar JP; Gil C
    J Proteome Res; 2011 Feb; 10(2):502-17. PubMed ID: 21133346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vacuolar dynamics during the morphogenetic transition in Candida albicans.
    Veses V; Gow NA
    FEMS Yeast Res; 2008 Dec; 8(8):1339-48. PubMed ID: 19054134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of CaBud6p in the polarized growth of Candida albicans.
    Song Y; Kim JY
    J Microbiol; 2006 Jun; 44(3):311-9. PubMed ID: 16820761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A characterization of pH-regulated dimorphism in Candida albicans.
    Buffo J; Herman MA; Soll DR
    Mycopathologia; 1984 Mar; 85(1-2):21-30. PubMed ID: 6374461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrastructural localization of anionic sites on the surface of yeast, hyphal and germ-tube forming cells of Candida albicans.
    Horisberger M; Clerc MF
    Eur J Cell Biol; 1988 Aug; 46(3):444-52. PubMed ID: 3053174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential increase in cytoplasmic pH at bud and germ tube formation in Candida albicans: studies of a nongerminative variant.
    Kaur S; Mishra P
    Can J Microbiol; 1994 Sep; 40(9):720-3. PubMed ID: 7954107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of microfilaments and microtubules in apical growth and dimorphism of Candida albicans.
    Yokoyama K; Kaji H; Nishimura K; Miyaji M
    J Gen Microbiol; 1990 Jun; 136(6):1067-75. PubMed ID: 2200842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach.
    Mech F; Wilson D; Lehnert T; Hube B; Thilo Figge M
    Cytometry A; 2014 Feb; 85(2):126-39. PubMed ID: 24259441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microtubules and actin cytoskeleton in Cryptococcus neoformans compared with ascomycetous budding and fission yeasts.
    Kopecká M; Gabriel M; Takeo K; Yamaguchi M; Svoboda A; Ohkusu M; Hata K; Yoshida S
    Eur J Cell Biol; 2001 Apr; 80(4):303-11. PubMed ID: 11370745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis.
    Zheng X; Wang Y; Wang Y
    EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Candida albicans Cyr1, Cap1 and G-actin form a sensor/effector apparatus for activating cAMP synthesis in hyphal growth.
    Zou H; Fang HM; Zhu Y; Wang Y
    Mol Microbiol; 2010 Feb; 75(3):579-91. PubMed ID: 19943905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Candida albicans Hyphal Expansion Causes Phagosomal Membrane Damage and Luminal Alkalinization.
    Westman J; Moran G; Mogavero S; Hube B; Grinstein S
    mBio; 2018 Sep; 9(5):. PubMed ID: 30206168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytological interrelationships between the cell cycle and duplication cycle of Candida albicans.
    Gow NA; Henderson G; Gooday GW
    Microbios; 1986; 47(191):97-105. PubMed ID: 3537639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynein-dependent nuclear dynamics affect morphogenesis in Candida albicans by means of the Bub2p spindle checkpoint.
    Finley KR; Bouchonville KJ; Quick A; Berman J
    J Cell Sci; 2008 Feb; 121(Pt 4):466-76. PubMed ID: 18211963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial behaviour during the yeast-hypha transition of Candida albicans.
    Aoki S; Ito-Kuwa S; Nakamura Y; Masuhara T
    Microbios; 1989; 60(243):79-86. PubMed ID: 2691864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of yeast-to-hypha transition in Candida albicans by phorbasin H isolated from Phorbas sp.
    Lee SH; Jeon JE; Ahn CH; Chung SC; Shin J; Oh KB
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):3141-8. PubMed ID: 23229567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.