BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35402407)

  • 1. Identification of Kic1p and Cdc42p as Novel Targets to Engineer Yeast Acetic Acid Stress Tolerance.
    Chen HQ; Xing Q; Cheng C; Zhang MM; Liu CG; Champreda V; Zhao XQ
    Front Bioeng Biotechnol; 2022; 10():837813. PubMed ID: 35402407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced acetic acid stress tolerance and ethanol production in
    Zhang MM; Xiong L; Tang YJ; Mehmood MA; Zhao ZK; Bai FW; Zhao XQ
    Biotechnol Biofuels; 2019; 12():116. PubMed ID: 31168321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Overexpression of a leucine transfer RNA gene tL(CAA)K improves the acetic acid tolerance of Saccharomyces cerevisiae].
    Zhao S; Yuan B; Wang X; Chen H; Zhao X; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4293-4302. PubMed ID: 34984875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation.
    Cheng C; Zhang M; Xue C; Bai F; Zhao X
    J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae.
    Chen Y; Sheng J; Jiang T; Stevens J; Feng X; Wei N
    Biotechnol Biofuels; 2016; 9():9. PubMed ID: 26766964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies.
    Zhang MM; Chen HQ; Ye PL; Wattanachaisaereekul S; Bai FW; Zhao XQ
    Prog Mol Subcell Biol; 2019; 58():61-83. PubMed ID: 30911889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid.
    Zhang M; Zhang K; Mehmood MA; Zhao ZK; Bai F; Zhao X
    Bioresour Technol; 2017 Dec; 245(Pt B):1461-1468. PubMed ID: 28606754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of arginase gene
    Xiong L; Wang YT; Zhou MH; Takagi H; Qin J; Zhao XQ
    Synth Syst Biotechnol; 2024 Dec; 9(4):723-732. PubMed ID: 38882181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.
    Mira NP; Palma M; Guerreiro JF; Sá-Correia I
    Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating cell flocculation-associated protein kinases in Saccharomyces cerevisiae enables improved stress tolerance and efficient cellulosic ethanol production.
    Ye PL; Wang XQ; Yuan B; Liu CG; Zhao XQ
    Bioresour Technol; 2022 Mar; 348():126758. PubMed ID: 35134528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.
    Geng P; Zhang L; Shi GY
    World J Microbiol Biotechnol; 2017 May; 33(5):94. PubMed ID: 28405910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.
    Zhang MM; Zhao XQ; Cheng C; Bai FW
    Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of inhibitor tolerance in Saccharomyces cerevisiae by overexpression of the quinone oxidoreductase family gene YCR102C.
    Chen H; Li J; Wan C; Fang Q; Bai F; Zhao X
    FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31374572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.
    Ma C; Wei X; Sun C; Zhang F; Xu J; Zhao X; Bai F
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2441-9. PubMed ID: 25698512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae].
    Zhao X; Zhang M; Xu G; Xu J; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2014 Mar; 30(3):368-80. PubMed ID: 25007573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated transcriptomic and proteomic analysis of the acetic acid stress in Issatchenkia orientalis.
    Li Y; Wu Z; Li R; Miao Y; Weng P; Wang L
    J Food Biochem; 2020 Jun; 44(6):e13203. PubMed ID: 32232868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening novel genes by a comprehensive strategy to construct multiple stress-tolerant industrial Saccharomyces cerevisiae with prominent bioethanol production.
    Wang L; Li B; Su RR; Wang SP; Xia ZY; Xie CY; Tang YQ
    Biotechnol Biofuels Bioprod; 2022 Jan; 15(1):11. PubMed ID: 35418148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Protein Expression in Set5p-Mediated Acetic Acid Stress Response and Novel Targets for Engineering Yeast Stress Tolerance.
    Zhang MM; Yuan B; Wang YT; Zhang FL; Liu CG; Zhao XQ
    J Proteome Res; 2024 Feb; ():. PubMed ID: 38396335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae.
    Oh EJ; Wei N; Kwak S; Kim H; Jin YS
    J Biotechnol; 2019 Feb; 292():1-4. PubMed ID: 30615911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.