These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 35402873)

  • 1. Anisotropic porous designed polymer coatings for high-performance passive all-day radiative cooling.
    Zhu J; An Z; Zhang A; Du Y; Zhou X; Geng Y; Chen G
    iScience; 2022 Apr; 25(4):104126. PubMed ID: 35402873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling.
    Mandal J; Fu Y; Overvig AC; Jia M; Sun K; Shi NN; Zhou H; Xiao X; Yu N; Yang Y
    Science; 2018 Oct; 362(6412):315-319. PubMed ID: 30262632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green-Manufactured and Recyclable Coatings for Subambient Daytime Radiative Cooling.
    Liu R; Zhou Z; Mo X; Liu P; Hu B; Duan J; Zhou J
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46972-46979. PubMed ID: 36215717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable and Flexible Electrospun Film for Daytime Subambient Radiative Cooling.
    Jing W; Zhang S; Zhang W; Chen Z; Zhang C; Wu D; Gao Y; Zhu H
    ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34132091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerogel-Functionalized Thermoplastic Polyurethane as Waterproof, Breathable Freestanding Films and Coatings for Passive Daytime Radiative Cooling.
    Shan X; Liu L; Wu Y; Yuan D; Wang J; Zhang C; Wang J
    Adv Sci (Weinh); 2022 Jul; 9(20):e2201190. PubMed ID: 35474617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural polymer for highly efficient all-day passive radiative cooling.
    Wang T; Wu Y; Shi L; Hu X; Chen M; Wu L
    Nat Commun; 2021 Jan; 12(1):365. PubMed ID: 33446648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose binary coatings with spherical envelope structure via structure rearrangement in ball milling for integrated radiative cooling-electricity generation.
    Cai C; Wu X; Chen Y; Cheng F; Wei Z
    Int J Biol Macromol; 2024 Oct; 277(Pt 3):134248. PubMed ID: 39098463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling.
    Wang HD; Xue CH; Ji ZY; Huang MC; Jiang ZH; Liu BY; Deng FQ; An QF; Guo XJ
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51307-51317. PubMed ID: 36320188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Daytime radiative cooler using porous TiO
    Zahir M; Benlattar M
    Appl Opt; 2020 Oct; 59(30):9400-9408. PubMed ID: 33104657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate Composite SiO
    Han D; Wang C; Han CB; Cui Y; Ren WR; Zhao WK; Jiang Q; Yan H
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9303-9312. PubMed ID: 38343044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Robust All-Polymer Porous Coatings for Passive Daytime Radiative Cooling.
    Zou W; Luo H; Yang M; Xu J; Zhao N
    Macromol Rapid Commun; 2023 Feb; 44(4):e2200695. PubMed ID: 36305388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing Nanoporous Polymer Films for High-Performance Passive Daytime Radiative Cooling.
    Huang L; Hu Y; Yao X; Chesman ASR; Wang H; Sagoe-Crentsil K; Duan W
    ACS Appl Mater Interfaces; 2024 Oct; 16(40):54401-54411. PubMed ID: 39239925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Daytime Radiative Cooling Coating Based on the Y
    Du T; Niu J; Wang L; Bai J; Wang S; Li S; Fan Y
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51351-51360. PubMed ID: 36332077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical Superhydrophobic Poly(vinylidene fluoride-
    Meng X; Chen Z; Qian C; Song Z; Wang L; Li Q; Chen X
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2256-2266. PubMed ID: 36541618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Daytime Radiative Cooling Enhanced by Enabling Three-Phase Composites with Scattering Interfaces between Silica Microspheres and Hierarchical Porous Coatings.
    Ma H; Wang L; Dou S; Zhao H; Huang M; Xu Z; Zhang X; Xu X; Zhang A; Yue H; Ali G; Zhang C; Zhou W; Li Y; Zhan Y; Huang C
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19282-19290. PubMed ID: 33866783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous Structure of Polymer Films Optimized by Rationally Tuning Phase Separation for Passive All-Day Radiative Cooling.
    Li L; Liu G; Zhang Q; Zhao H; Shi R; Wang C; Li Z; Zhou B; Zhang Y
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6504-6512. PubMed ID: 38267401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Radiative Cooling Textiles Based on Composite Nanoporous Fibers for Personal Thermal Management.
    Li M; Yan Z; Fan D
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):17848-17857. PubMed ID: 36977290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rationally Tuning Phase Separation in Polymeric Membranes toward Optimized All-day Passive Radiative Coolers.
    Cai X; Wang Y; Luo Y; Xu J; Zhao L; Lin Y; Ning Y; Wang J; Gao L; Li D
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35657958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macro-Nanoporous Film with Cauliflower-Shaped Fibers for Highly Efficient Passive Daytime Radiative Cooling.
    Wei L; Li N; Liu H; Sun C; Chen A; Yang R; Qin Y; Bao H
    ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39360809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.