These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 35402909)
1. nMOWChIP-seq: low-input genome-wide mapping of non-histone targets. Liu Z; Naler LB; Zhu Y; Deng C; Zhang Q; Zhu B; Zhou Z; Sarma M; Murray A; Xie H; Lu C NAR Genom Bioinform; 2022 Jun; 4(2):lqac030. PubMed ID: 35402909 [TBL] [Abstract][Full Text] [Related]
2. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data. Zhang L; Xue G; Liu J; Li Q; Wang Y BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100 [TBL] [Abstract][Full Text] [Related]
3. ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. Ho JW; Bishop E; Karchenko PV; Nègre N; White KP; Park PJ BMC Genomics; 2011 Feb; 12():134. PubMed ID: 21356108 [TBL] [Abstract][Full Text] [Related]
4. Global Mapping of Transcription Factor Binding Sites by Sequencing Chromatin Surrogates: a Perspective on Experimental Design, Data Analysis, and Open Problems. Wei Y; Wu G; Ji H Stat Biosci; 2013 May; 5(1):156-178. PubMed ID: 23762209 [TBL] [Abstract][Full Text] [Related]
5. Annotation of gene promoters by integrative data-mining of ChIP-seq Pol-II enrichment data. Gupta R; Wikramasinghe P; Bhattacharyya A; Perez FA; Pal S; Davuluri RV BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S65. PubMed ID: 20122241 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq. Pal S; Gupta R; Davuluri RV Methods Mol Biol; 2014; 1176():1-9. PubMed ID: 25030914 [TBL] [Abstract][Full Text] [Related]
7. A graphical model approach visualizes regulatory relationships between genome-wide transcription factor binding profiles. Ng FSL; Ruau D; Wernisch L; Göttgens B Brief Bioinform; 2018 Jan; 19(1):162-173. PubMed ID: 27780826 [TBL] [Abstract][Full Text] [Related]
8. RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts. Anamika K; Gyenis À; Poidevin L; Poch O; Tora L PLoS One; 2012; 7(6):e38769. PubMed ID: 22701709 [TBL] [Abstract][Full Text] [Related]
9. Using ChIP-chip and ChIP-seq to study the regulation of gene expression: genome-wide localization studies reveal widespread regulation of transcription elongation. Gilchrist DA; Fargo DC; Adelman K Methods; 2009 Aug; 48(4):398-408. PubMed ID: 19275938 [TBL] [Abstract][Full Text] [Related]
10. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data. He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide signatures of transcription factor activity: connecting transcription factors, disease, and small molecules. Chen J; Hu Z; Phatak M; Reichard J; Freudenberg JM; Sivaganesan S; Medvedovic M PLoS Comput Biol; 2013; 9(9):e1003198. PubMed ID: 24039560 [TBL] [Abstract][Full Text] [Related]
12. Genome wide mapping of UBF binding-sites in mouse and human cell lines. Diesch J; Hannan RD; Sanij E Genom Data; 2015 Mar; 3():103-5. PubMed ID: 26484160 [TBL] [Abstract][Full Text] [Related]
13. A plug and play microfluidic platform for standardized sensitive low-input chromatin immunoprecipitation. Dirks RAM; Thomas PC; Wu H; Jones RC; Stunnenberg HG; Marks H Genome Res; 2021 May; 31(5):919-933. PubMed ID: 33707229 [TBL] [Abstract][Full Text] [Related]
14. CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins. Savic D; Partridge EC; Newberry KM; Smith SB; Meadows SK; Roberts BS; Mackiewicz M; Mendenhall EM; Myers RM Genome Res; 2015 Oct; 25(10):1581-9. PubMed ID: 26355004 [TBL] [Abstract][Full Text] [Related]
15. A map of direct TF-DNA interactions in the human genome. Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703 [TBL] [Abstract][Full Text] [Related]
16. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond. Mundade R; Ozer HG; Wei H; Prabhu L; Lu T Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472 [TBL] [Abstract][Full Text] [Related]
17. A high definition look at the NF-Y regulome reveals genome-wide associations with selected transcription factors. Dolfini D; Zambelli F; Pedrazzoli M; Mantovani R; Pavesi G Nucleic Acids Res; 2016 Jun; 44(10):4684-702. PubMed ID: 26896797 [TBL] [Abstract][Full Text] [Related]
18. Computer and statistical analysis of transcription factor binding and chromatin modifications by ChIP-seq data in embryonic stem cell. Orlov Y; Xu H; Afonnikov D; Lim B; Heng JC; Yuan P; Chen M; Yan J; Clarke N; Orlova N; Huss M; Gunbin K; Podkolodnyy N; Ng HH J Integr Bioinform; 2012 Sep; 9(2):211. PubMed ID: 22987856 [TBL] [Abstract][Full Text] [Related]
19. Temporal ChIP-on-Chip of RNA-Polymerase-II to detect novel gene activation events during photoreceptor maturation. Tummala P; Mali RS; Guzman E; Zhang X; Mitton KP Mol Vis; 2010 Feb; 16():252-71. PubMed ID: 20161818 [TBL] [Abstract][Full Text] [Related]
20. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example. Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]