These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35403004)

  • 1. Applying imaging flow cytometry and immunofluorescence in studying the dynamic Golgi structure in cultured cells.
    Wortzel I; Porat Z; Seger R; Maik-Rachline G
    STAR Protoc; 2022 Jun; 3(2):101278. PubMed ID: 35403004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry.
    Wortzel I; Koifman G; Rotter V; Seger R; Porat Z
    Sci Rep; 2017 Apr; 7(1):788. PubMed ID: 28400563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Golgi Apparatus Fragmentation Using Imaging Flow Cytometry.
    Wortzel I; Porat Z
    Methods Mol Biol; 2023; 2635():173-184. PubMed ID: 37074663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow cytometric analysis of phosphatidylcholine metabolism using organelle-selective click labeling.
    Tsuchiya M; Tachibana N; Hamachi I
    STAR Protoc; 2023 Sep; 4(3):102525. PubMed ID: 37635353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CaMKKβ-AMPKα2 signaling contributes to mitotic Golgi fragmentation and the G2/M transition in mammalian cells.
    Lee IJ; Lee CW; Lee JH
    Cell Cycle; 2015; 14(4):598-611. PubMed ID: 25590814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione Quantification in Live Cells with Real-Time Imaging and Flow Cytometry.
    Jiang X; Chen J; Wang MC; Wang J
    STAR Protoc; 2020 Dec; 1(3):100170. PubMed ID: 33377064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for synthesis and use of a turn-on fluorescent probe for quantifying labile Zn
    Kowada T; Watanabe T; Liu R; Mizukami S
    STAR Protoc; 2021 Jun; 2(2):100395. PubMed ID: 33796872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of myenteric and submucosal plexus from mouse gastrointestinal tract and subsequent flow cytometry and immunofluorescence.
    Ahrends T; Weiner M; Mucida D
    STAR Protoc; 2022 Mar; 3(1):101157. PubMed ID: 35146454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol to identify and analyze mouse and human quiescent hematopoietic stem cells using flow cytometry combined with confocal imaging.
    Qiu J; Menon V; Tzavaras N; Liang R; Ghaffari S
    STAR Protoc; 2022 Dec; 3(4):101828. PubMed ID: 36595934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput quantitation of intracellular trafficking and organelle disruption by flow cytometry.
    Chia PZ; Ramdzan YM; Houghton FJ; Hatters DM; Gleeson PA
    Traffic; 2014 May; 15(5):572-82. PubMed ID: 24612275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol to analyze chromatin-bound proteins through the cell cycle using Chromoflow flow cytometry.
    Alonso-Gil D; Losada A
    STAR Protoc; 2023 Dec; 4(4):102568. PubMed ID: 37725510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimized protocol to analyze membrane protein degradation in yeast using quantitative western blot and flow cytometry.
    Arines FM; Li M
    STAR Protoc; 2022 Jun; 3(2):101274. PubMed ID: 35403002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standardized flow-cytometry-based protocol to simultaneously measure transcription factor levels.
    Manso BA; Medina KL
    STAR Protoc; 2021 Jun; 2(2):100485. PubMed ID: 34041499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-staining human PBMCs with fluorescent antibodies and antibody-oligonucleotide conjugates for cell sorting prior to single-cell CITE-Seq.
    Shi X; Baracho GV; Lomas WE; Widmann SJ; Tyznik AJ
    STAR Protoc; 2021 Dec; 2(4):100893. PubMed ID: 34712996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of mTORC1 signaling in mouse atherosclerotic macrophages by flow cytometry and immunofluorescence.
    Zhang X; Stitham J; Rodriguez-Velez A; Jeong SJ; Park A; Yeh YS; Kapoor D; Mittendorfer B; Razani B
    STAR Protoc; 2022 Dec; 3(4):101665. PubMed ID: 36094885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitotic disassembly of the Golgi apparatus in vivo.
    Misteli T; Warren G
    J Cell Sci; 1995 Jul; 108 ( Pt 7)():2715-27. PubMed ID: 7593312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunofluorescence Microscopy of the Mammalian Golgi Apparatus.
    Arab M; Nayak SC; Vitali T; Lowe M
    Methods Mol Biol; 2023; 2557():101-111. PubMed ID: 36512212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enumeration of IFN-gamma-producing cells by flow cytometry. Comparison with fluorescence microscopy.
    Andersson U; Halldén G; Persson U; Hed J; Möller G; DeLey M
    J Immunol Methods; 1988 Aug; 112(1):139-42. PubMed ID: 3136208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of flow cytometry to analyze intracellular location and trafficking of cargo in cell populations.
    Toh WH; Houghton FJ; Chia PZ; Ramdzan YM; Hatters DM; Gleeson PA
    Methods Mol Biol; 2015; 1270():227-38. PubMed ID: 25702121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Golgi Morphology Using Immunofluorescence and CellProfiler Software.
    Mejia I; Chen YC; Díaz B
    Methods Mol Biol; 2023; 2557():765-784. PubMed ID: 36512250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.