These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 35403301)
1. Cuticular protein genes involve heat acclimation of insect larvae under global warming. Guo PL; Guo ZQ; Liu XD Insect Mol Biol; 2022 Aug; 31(4):519-532. PubMed ID: 35403301 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptome analysis of the rice leaf folder (Cnaphalocrocis medinalis) to heat acclimation. Quan PQ; Li MZ; Wang GR; Gu LL; Liu XD BMC Genomics; 2020 Jun; 21(1):450. PubMed ID: 32605538 [TBL] [Abstract][Full Text] [Related]
3. Glucose Dehydrogenases-Mediated Acclimation of an Important Rice Pest to Global Warming. Quan PQ; Li JR; Liu XD Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373294 [TBL] [Abstract][Full Text] [Related]
4. Heat-stress memory enhances the acclimation of a migratory insect pest to global warming. Quan PQ; Guo PL; He J; Liu XD Mol Ecol; 2024 Sep; 33(17):e17493. PubMed ID: 39132714 [TBL] [Abstract][Full Text] [Related]
5. Multigenerational heat acclimation increases thermal tolerance and expression levels of Hsp70 and Hsp90 in the rice leaf folder larvae. Gu LL; Li MZ; Wang GR; Liu XD J Therm Biol; 2019 Apr; 81():103-109. PubMed ID: 30975406 [TBL] [Abstract][Full Text] [Related]
6. Rapid shifts in thermal reaction norms and tolerance of brooded coral larvae following parental heat acclimation. Jiang L; Liu CY; Cui G; Huang LT; Yu XL; Sun YF; Tong HY; Zhou GW; Yuan XC; Hu YS; Zhou WL; Aranda M; Qian PY; Huang H Mol Ecol; 2023 Mar; 32(5):1098-1116. PubMed ID: 36528869 [TBL] [Abstract][Full Text] [Related]
7. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance. Jagdale GB; Grewal PS Int J Parasitol; 2003 Feb; 33(2):145-52. PubMed ID: 12633652 [TBL] [Abstract][Full Text] [Related]
8. GLUTATHIONE S-TRANSFERASE Genes IN THE RICE LEAFFOLDER, Cnaphalocrocis medinalis (LEPIDOPTERA: PYRALIDAE): IDENTIFICATION AND EXPRESSION PROFILES. Liu S; Rao XJ; Li MY; Feng MF; He MZ; Li SG Arch Insect Biochem Physiol; 2015 Sep; 90(1):1-13. PubMed ID: 25917811 [TBL] [Abstract][Full Text] [Related]
9. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis. Yu HZ; Wen DF; Wang WL; Geng L; Zhang Y; Xu JP Int J Mol Sci; 2015 Sep; 16(9):21873-96. PubMed ID: 26378520 [TBL] [Abstract][Full Text] [Related]
10. Host choice, settling and folding leaf behaviors of the larval rice leaf folder under heat stress. Bodlah MA; Zhu AX; Liu XD Bull Entomol Res; 2016 Dec; 106(6):809-817. PubMed ID: 27443747 [TBL] [Abstract][Full Text] [Related]
11. Behavioural adaptation of the rice leaf folder Cnaphalocrocis medinalis to short-term heat stress. Bodlah MA; Gu LL; Tan Y; Liu XD J Insect Physiol; 2017 Jul; 100():28-34. PubMed ID: 28522415 [TBL] [Abstract][Full Text] [Related]
12. Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues. Des Marteaux LE; McKinnon AH; Udaka H; Toxopeus J; Sinclair BJ BMC Genomics; 2017 May; 18(1):357. PubMed ID: 28482796 [TBL] [Abstract][Full Text] [Related]
14. Thermal tolerance in the amphipod Sunamphitoe parmerong from a global warming hotspot, acclimatory carryover effects within generation. Campbell H; Ledet J; Poore AGB; Byrne M Mar Environ Res; 2020 Sep; 160():105048. PubMed ID: 32907741 [TBL] [Abstract][Full Text] [Related]
15. The overexpression of insect endogenous microRNA in transgenic rice inhibits the pupation of Chilo suppressalis and Cnaphalocrocis medinalis. Wen N; Chen J; Chen G; Du L; Chen H; Li Y; Peng Y; Yang X; Han L Pest Manag Sci; 2021 Sep; 77(9):3990-3999. PubMed ID: 33890699 [TBL] [Abstract][Full Text] [Related]
16. Midgut transcriptomal response of the rice leaffolder, Cnaphalocrocis medinalis (Guenée) to Cry1C toxin. Yang Y; Xu H; Lu Y; Wang C; Lu Z PLoS One; 2018; 13(1):e0191686. PubMed ID: 29360856 [TBL] [Abstract][Full Text] [Related]
17. Effects of nitrogen fertilizer and magnesium manipulation on the Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Ge LQ; Wan DJ; Xu J; Jiang LB; Wu JC J Econ Entomol; 2013 Feb; 106(1):196-205. PubMed ID: 23448032 [TBL] [Abstract][Full Text] [Related]
18. Defense Responses of Different Rice Varieties Affect Growth Performance and Food Utilization of Cnaphalocrocis medinalis Larvae. Zhao X; Xu H; Yang Y; Sun T; Ullah F; Zhu P; Lu Y; Huang J; Wang Z; Lu Z; Guo J Rice (N Y); 2024 Jan; 17(1):9. PubMed ID: 38244131 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptome analysis on the alteration of gene expression in ayu (Plecoglossus altivelis) larvae associated with salinity change. Lu XJ; Zhang H; Yang GJ; Li MY; Chen J Dongwuxue Yanjiu; 2016 May; 37(3):126-35. PubMed ID: 27265650 [TBL] [Abstract][Full Text] [Related]
20. Rice Leaf Folder Larvae Alter Their Shelter-Building Behavior and Shelter Structure in Response to Heat Stress. Bodlah MA; Gu LL; Wang GR; Liu XD J Econ Entomol; 2019 Feb; 112(1):149-155. PubMed ID: 30321386 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]