BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35404051)

  • 1. HergSPred: Accurate Classification of hERG Blockers/Nonblockers with Machine-Learning Models.
    Zhang X; Mao J; Wei M; Qi Y; Zhang JZH
    J Chem Inf Model; 2022 Apr; 62(8):1830-1839. PubMed ID: 35404051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of the hERG K+ Channel Blockage Using Online Chemical Database and Modeling Environment (OCHEM).
    Li X; Zhang Y; Li H; Zhao Y
    Mol Inform; 2017 Dec; 36(12):. PubMed ID: 28857516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual screening of DrugBank database for hERG blockers using topological Laplacian-assisted AI models.
    Feng H; Wei GW
    Comput Biol Med; 2023 Feb; 153():106491. PubMed ID: 36599209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining multi-dimensional molecular fingerprints to predict the hERG cardiotoxicity of compounds.
    Ding W; Nan Y; Wu J; Han C; Xin X; Li S; Liu H; Zhang L
    Comput Biol Med; 2022 May; 144():105390. PubMed ID: 35290808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. hERG agonists pose challenges to web-based machine learning methods for prediction of drug-hERG channel interaction.
    El Harchi A; Hancox JC
    J Pharmacol Toxicol Methods; 2023; 123():107293. PubMed ID: 37468081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Study on the hERG Blocker Prediction Using Chemical Fingerprint Analysis.
    Choi KE; Balupuri A; Kang NS
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32512802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism.
    Wang T; Sun J; Zhao Q
    Comput Biol Med; 2023 Feb; 153():106464. PubMed ID: 36584603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico prediction of hERG blockers using machine learning and deep learning approaches.
    Chen Y; Yu X; Li W; Tang Y; Liu G
    J Appl Toxicol; 2023 Oct; 43(10):1462-1475. PubMed ID: 37093028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TSSF-hERG: A machine-learning-based hERG potassium channel-specific scoring function for chemical cardiotoxicity prediction.
    Meng J; Zhang L; Wang L; Li S; Xie D; Zhang Y; Liu H
    Toxicology; 2021 Dec; 464():153018. PubMed ID: 34757159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A human ether-á-go-go-related (hERG) ion channel atomistic model generated by long supercomputer molecular dynamics simulations and its use in predicting drug cardiotoxicity.
    Anwar-Mohamed A; Barakat KH; Bhat R; Noskov SY; Tyrrell DL; Tuszynski JA; Houghton M
    Toxicol Lett; 2014 Nov; 230(3):382-92. PubMed ID: 25127758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepHIT: a deep learning framework for prediction of hERG-induced cardiotoxicity.
    Ryu JY; Lee MY; Lee JH; Lee BH; Oh KS
    Bioinformatics; 2020 May; 36(10):3049-3055. PubMed ID: 32022860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BayeshERG: a robust, reliable and interpretable deep learning model for predicting hERG channel blockers.
    Kim H; Park M; Lee I; Nam H
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35709752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of hERG potassium channel blockage using ensemble learning methods and molecular fingerprints.
    Liu M; Zhang L; Li S; Yang T; Liu L; Zhao J; Liu H
    Toxicol Lett; 2020 Oct; 332():88-96. PubMed ID: 32629073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. hERG classification model based on a combination of support vector machine method and GRIND descriptors.
    Li Q; Jørgensen FS; Oprea T; Brunak S; Taboureau O
    Mol Pharm; 2008; 5(1):117-27. PubMed ID: 18197627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ADMET Evaluation in Drug Discovery. 16. Predicting hERG Blockers by Combining Multiple Pharmacophores and Machine Learning Approaches.
    Wang S; Sun H; Liu H; Li D; Li Y; Hou T
    Mol Pharm; 2016 Aug; 13(8):2855-66. PubMed ID: 27379394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine-learning technique, QSAR and molecular dynamics for hERG-drug interactions.
    Das NR; Sharma T; Toropov AA; Toropova AP; Tripathi MK; Achary PGR
    J Biomol Struct Dyn; 2023; 41(23):13766-13791. PubMed ID: 37021352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico prediction of hERG inhibition.
    Jing Y; Easter A; Peters D; Kim N; Enyedy IJ
    Future Med Chem; 2015; 7(5):571-86. PubMed ID: 25921399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Catch-22 of Predicting hERG Blockade Using Publicly Accessible Bioactivity Data.
    Siramshetty VB; Chen Q; Devarakonda P; Preissner R
    J Chem Inf Model; 2018 Jun; 58(6):1224-1233. PubMed ID: 29772901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational determination of hERG-related cardiotoxicity of drug candidates.
    Lee HM; Yu MS; Kazmi SR; Oh SY; Rhee KH; Bae MA; Lee BH; Shin DS; Oh KS; Ceong H; Lee D; Na D
    BMC Bioinformatics; 2019 May; 20(Suppl 10):250. PubMed ID: 31138104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.