These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35404352)

  • 21. Engineering strategy of yeast metabolism for higher alcohol production.
    Matsuda F; Furusawa C; Kondo T; Ishii J; Shimizu H; Kondo A
    Microb Cell Fact; 2011 Sep; 10():70. PubMed ID: 21902829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions.
    Kim SK; Jo JH; Park YC; Jin YS; Seo JH
    Enzyme Microb Technol; 2017 Jun; 101():30-35. PubMed ID: 28433188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic pathway regulation: recent advances and methods of construction.
    Tan SZ; Prather KL
    Curr Opin Chem Biol; 2017 Dec; 41():28-35. PubMed ID: 29059607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering of Escherichia coli for the production of hydroxy fatty acids from glucose.
    Cao Y; Cheng T; Zhao G; Niu W; Guo J; Xian M; Liu H
    BMC Biotechnol; 2016 Mar; 16():26. PubMed ID: 26956722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.
    Shaw AJ; Lam FH; Hamilton M; Consiglio A; MacEwen K; Brevnova EE; Greenhagen E; LaTouf WG; South CR; van Dijken H; Stephanopoulos G
    Science; 2016 Aug; 353(6299):583-6. PubMed ID: 27493184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fermentations with new recombinant organisms.
    Bothast RJ; Nichols NN; Dien BS
    Biotechnol Prog; 1999; 15(5):867-75. PubMed ID: 10514256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and improve bioethanol production.
    Chen X; Xiao Y; Shen W; Govender A; Zhang L; Fan Y; Wang Z
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2449-58. PubMed ID: 26610799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Current and future modalities of dynamic control in metabolic engineering.
    Lalwani MA; Zhao EM; Avalos JL
    Curr Opin Biotechnol; 2018 Aug; 52():56-65. PubMed ID: 29574344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose.
    Guo W; Sheng J; Zhao H; Feng X
    Microb Cell Fact; 2016 Feb; 15():24. PubMed ID: 26830023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain.
    Nicolaï T; Deparis Q; Foulquié-Moreno MR; Thevelein JM
    Microb Cell Fact; 2021 Jun; 20(1):114. PubMed ID: 34098954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of yeast for production of fuels and chemicals.
    Nielsen J; Larsson C; van Maris A; Pronk J
    Curr Opin Biotechnol; 2013 Jun; 24(3):398-404. PubMed ID: 23611565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolutionary engineering of Escherichia coli for improved anaerobic growth in minimal medium accelerated lactate production.
    Wang B; Zhang X; Yu X; Cui Z; Wang Z; Chen T; Zhao X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2155-2170. PubMed ID: 30623201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering an Optogenetic CRISPRi Platform for Improved Chemical Production.
    Wu P; Chen Y; Liu M; Xiao G; Yuan J
    ACS Synth Biol; 2021 Jan; 10(1):125-131. PubMed ID: 33356154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering Escherichia coli for the utilization of ethylene glycol.
    Pandit AV; Harrison E; Mahadevan R
    Microb Cell Fact; 2021 Jan; 20(1):22. PubMed ID: 33482812
    [TBL] [Abstract][Full Text] [Related]  

  • 36. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae.
    Eichenberger M; Hansson A; Fischer D; Dürr L; Naesby M
    FEMS Yeast Res; 2018 Jun; 18(4):. PubMed ID: 29771352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in 2-phenylethanol production from engineered microorganisms.
    Wang Y; Zhang H; Lu X; Zong H; Zhuge B
    Biotechnol Adv; 2019; 37(3):403-409. PubMed ID: 30768954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in engineered microorganisms for improving metabolic conversion via microgravity effects.
    Huangfu J; Zhang G; Li J; Li C
    Bioengineered; 2015; 6(4):251-5. PubMed ID: 26038088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.
    Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosynthesis of adipic acid in metabolically engineered Saccharomyces cerevisiae.
    Zhang X; Liu Y; Wang J; Zhao Y; Deng Y
    J Microbiol; 2020 Dec; 58(12):1065-1075. PubMed ID: 33095385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.