These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 35404571)
1. Development and Roberts TR; Garren MRS; Wilson SN; Handa H; Batchinsky AI ACS Appl Bio Mater; 2022 May; 5(5):2212-2223. PubMed ID: 35404571 [TBL] [Abstract][Full Text] [Related]
2. Mimicking the Endothelium: Dual Action Heparinized Nitric Oxide Releasing Surface. Devine R; Goudie MJ; Singha P; Schmiedt C; Douglass M; Brisbois EJ; Handa H ACS Appl Mater Interfaces; 2020 May; 12(18):20158-20171. PubMed ID: 32271542 [TBL] [Abstract][Full Text] [Related]
3. A dual-action nitric oxide-releasing slippery surface for extracorporeal organ support: Dynamic in vitro hemocompatibility evaluation. Roberts TR; Harea GT; Zang Y; Devine RP; Maffe P; Handa H; Batchinsky AI J Biomed Mater Res B Appl Biomater; 2023 Apr; 111(4):923-932. PubMed ID: 36404401 [TBL] [Abstract][Full Text] [Related]
4. Multifunctional surfaces through synergistic effects of heparin and nitric oxide release for a highly efficient treatment of blood-contacting devices. Tran DL; Le Thi P; Lee SM; Hoang Thi TT; Park KD J Control Release; 2021 Jan; 329():401-412. PubMed ID: 33309971 [TBL] [Abstract][Full Text] [Related]
5. Immobilization of heparin/poly-(L)-lysine nanoparticles on dopamine-coated surface to create a heparin density gradient for selective direction of platelet and vascular cells behavior. Liu T; Liu Y; Chen Y; Liu S; Maitz MF; Wang X; Zhang K; Wang J; Wang Y; Chen J; Huang N Acta Biomater; 2014 May; 10(5):1940-54. PubMed ID: 24342042 [TBL] [Abstract][Full Text] [Related]
6. Effect of hirudin versus heparin on hemocompatibility of blood contacting biomaterials: an in vitro study. Kopp R; Bernsberg R; Kashefi A; Mottaghy K; Rossaint R; Kuhlen R Int J Artif Organs; 2005 Dec; 28(12):1272-7. PubMed ID: 16404704 [TBL] [Abstract][Full Text] [Related]
7. Achieving superior anticoagulation of endothelial membrane mimetic coating by heparin grafting at zwitterionic biocompatible interfaces. Li R; Li Y; Bai Y; Yi P; Sun C; Shi S; Gong YK Int J Biol Macromol; 2024 Feb; 257(Pt 1):128574. PubMed ID: 38052281 [TBL] [Abstract][Full Text] [Related]
8. Improving blood-compatibility via surface heparin-immobilization based on a liquid crystalline matrix. Zhao J; Chen Y; Yang S; Wu S; Zeng R; Wu H; Zhang J; Zha Z; Tu M Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():133-41. PubMed ID: 26478296 [TBL] [Abstract][Full Text] [Related]
9. Heparinization of cell surfaces with short peptide-conjugated PEG-lipid regulates thromboinflammation in transplantation of human MSCs and hepatocytes. Asif S; Ekdahl KN; Fromell K; Gustafson E; Barbu A; Le Blanc K; Nilsson B; Teramura Y Acta Biomater; 2016 Apr; 35():194-205. PubMed ID: 26876877 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional coatings that mimic the endothelium: surface bound active heparin nanoparticles with in situ generation of nitric oxide from nitrosothiols. Luo R; Zhang J; Zhuang W; Deng L; Li L; Yu H; Wang J; Huang N; Wang Y J Mater Chem B; 2018 Sep; 6(35):5582-5595. PubMed ID: 32254968 [TBL] [Abstract][Full Text] [Related]
11. Heparin surfaces: Impact of immobilization chemistry on hemocompatibility and protein adsorption. Gore S; Andersson J; Biran R; Underwood C; Riesenfeld J J Biomed Mater Res B Appl Biomater; 2014 Nov; 102(8):1817-24. PubMed ID: 24711209 [TBL] [Abstract][Full Text] [Related]
12. Mussel-inspired one-step adherent coating rich in amine groups for covalent immobilization of heparin: hemocompatibility, growth behaviors of vascular cells, and tissue response. Yang Y; Qi P; Wen F; Li X; Xia Q; Maitz MF; Yang Z; Shen R; Tu Q; Huang N ACS Appl Mater Interfaces; 2014 Aug; 6(16):14608-20. PubMed ID: 25105346 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of heparin on polylactide for application to degradable biomaterials in contact with blood. Seifert B; Groth T; Herrmann K; Romaniuk P J Biomater Sci Polym Ed; 1995; 7(3):277-87. PubMed ID: 7577830 [TBL] [Abstract][Full Text] [Related]
14. Correlations between activated clotting time values and heparin concentration measurements in young infants undergoing cardiopulmonary bypass. Guzzetta NA; Monitz HG; Fernandez JD; Fazlollah TM; Knezevic A; Miller BE Anesth Analg; 2010 Jul; 111(1):173-9. PubMed ID: 20519414 [TBL] [Abstract][Full Text] [Related]
15. Effects of nanotopography on the in vitro hemocompatibility of nanocrystalline diamond coatings. Skoog SA; Lu Q; Malinauskas RA; Sumant AV; Zheng J; Goering PL; Narayan RJ; Casey BJ J Biomed Mater Res A; 2017 Jan; 105(1):253-264. PubMed ID: 27543370 [TBL] [Abstract][Full Text] [Related]
16. Immobilization of heparin/poly-l-lysine microspheres on medical grade high nitrogen nickel-free austenitic stainless steel surface to improve the biocompatibility and suppress thrombosis. Li M; Wu H; Wang Y; Yin T; Gregersen H; Zhang X; Liao X; Wang G Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():198-205. PubMed ID: 28183598 [TBL] [Abstract][Full Text] [Related]
17. Development and hemocompatibility testing of nitric oxide releasing polymers using a rabbit model of thrombogenicity. Major TC; Handa H; Annich GM; Bartlett RH J Biomater Appl; 2014 Oct; 29(4):479-501. PubMed ID: 24934500 [TBL] [Abstract][Full Text] [Related]
19. Sodium alginate/heparin composites on PVC surfaces inhibit the thrombosis and platelet adhesion: applications in cardiac surgery. Gao W; Lin T; Li T; Yu M; Hu X; Duan D Int J Clin Exp Med; 2013; 6(4):259-68. PubMed ID: 23641302 [TBL] [Abstract][Full Text] [Related]