These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 35404594)
1. High Entropy Alloy Electrocatalytic Electrode toward Alkaline Glycerol Valorization Coupling with Acidic Hydrogen Production. Fan L; Ji Y; Wang G; Chen J; Chen K; Liu X; Wen Z J Am Chem Soc; 2022 Apr; 144(16):7224-7235. PubMed ID: 35404594 [TBL] [Abstract][Full Text] [Related]
2. Nickel-Cobalt Selenide Electrocatalytic Electrode toward Glucose Oxidation Coupling with Alkaline Hydrogen Production. Lin X; Zhong H; Hu W; Du J Inorg Chem; 2023 Jul; 62(26):10513-10521. PubMed ID: 37347151 [TBL] [Abstract][Full Text] [Related]
3. Energy-saving H Liu B; Wang G; Feng X; Dai L; Wen Z; Ci S Nanoscale; 2022 Sep; 14(35):12841-12848. PubMed ID: 36039893 [TBL] [Abstract][Full Text] [Related]
4. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Li Y; Wei X; Chen L; Shi J; He M Nat Commun; 2019 Nov; 10(1):5335. PubMed ID: 31767871 [TBL] [Abstract][Full Text] [Related]
5. Development of high-efficiency alkaline OER electrodes for hybrid acid-alkali electrolytic H Wang Z; Cai P; Chen Q; Yin X; Chen K; Lu Z; Wen Z J Colloid Interface Sci; 2023 Apr; 636():610-617. PubMed ID: 36669454 [TBL] [Abstract][Full Text] [Related]
6. Molybdenum, tungsten doped cobalt phosphides as efficient catalysts for coproduction of hydrogen and formate by glycerol electrolysis. Chang J; Song F; Hou Y; Wu D; Xu F; Jiang K; Gao Z J Colloid Interface Sci; 2024 Jul; 665():152-162. PubMed ID: 38520932 [TBL] [Abstract][Full Text] [Related]
7. Electrocatalytic Glycerol Oxidation with Concurrent Hydrogen Evolution Utilizing an Efficient MoO Yu X; Dos Santos EC; White J; Salazar-Alvarez G; Pettersson LGM; Cornell A; Johnsson M Small; 2021 Nov; 17(44):e2104288. PubMed ID: 34596974 [TBL] [Abstract][Full Text] [Related]
8. Understanding Alkaline Hydrogen Oxidation Reaction on PdNiRuIrRh High-Entropy-Alloy by Machine Learning Potential. Men Y; Wu D; Hu Y; Li L; Li P; Jia S; Wang J; Cheng G; Chen S; Luo W Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202217976. PubMed ID: 37129537 [TBL] [Abstract][Full Text] [Related]
9. Formation of Disordered High-Entropy-Alloy Nanoparticles for Highly Efficient Hydrogen Electrocatalysis. Huang X; Wu Z; Zhang B; Yang G; Wang HF; Wang H; Cao Y; Peng F; Li S; Yu H Small; 2024 Jul; 20(29):e2311631. PubMed ID: 38513241 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of PtRu alloy nanofireworks as effective catalysts toward glycerol electro-oxidation in alkaline media. Ren F; Zhang Z; Liang Z; Shen Q; Luan Y; Xing R; Fei Z; Du Y J Colloid Interface Sci; 2022 Feb; 608(Pt 1):800-808. PubMed ID: 34785457 [TBL] [Abstract][Full Text] [Related]
11. Selective Adsorption Behavior Modulation on Nickel Selenide by Heteroatom Implantation and Heterointerface Construction Achieves Efficient Co-production of H Feng Y; He X; Cheng M; Zhu Y; Wang W; Zhang Y; Zhang H; Zhang G Small; 2023 Aug; 19(35):e2301986. PubMed ID: 37096917 [TBL] [Abstract][Full Text] [Related]
12. Formate Over-Oxidation Limits Industrialization of Glycerol Oxidation Paired with Carbon Dioxide Reduction to Formate. van den Bosch B; Rawls B; Brands MB; Koopman C; Phillips MF; Figueiredo MC; Gruter GM Chempluschem; 2023 Apr; 88(4):e202300112. PubMed ID: 37042441 [TBL] [Abstract][Full Text] [Related]
13. Optimized Electronic Modification of S-Doped CuO Induced by Oxidative Reconstruction for Coupling Glycerol Electrooxidation with Hydrogen Evolution. Fan RY; Zhai XJ; Qiao WZ; Zhang YS; Yu N; Xu N; Lv QX; Chai YM; Dong B Nanomicro Lett; 2023 Jul; 15(1):190. PubMed ID: 37515596 [TBL] [Abstract][Full Text] [Related]
14. Vertical 3D Nanostructures Boost Efficient Hydrogen Production Coupled with Glycerol Oxidation Under Alkaline Conditions. Li S; Liu D; Wang G; Ma P; Wang X; Wang J; Ma R Nanomicro Lett; 2023 Jul; 15(1):189. PubMed ID: 37515627 [TBL] [Abstract][Full Text] [Related]
15. Constructing Fully-Active and Ultra-Active Sites in High-Entropy Alloy Nanoclusters for Hydrazine Oxidation-Assisted Electrolytic Hydrogen Production. Feng G; Pan Y; Su D; Xia D Adv Mater; 2024 Mar; 36(13):e2309715. PubMed ID: 38118066 [TBL] [Abstract][Full Text] [Related]
16. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Li H; Han Y; Zhao H; Qi W; Zhang D; Yu Y; Cai W; Li S; Lai J; Huang B; Wang L Nat Commun; 2020 Oct; 11(1):5437. PubMed ID: 33116124 [TBL] [Abstract][Full Text] [Related]
17. Coupling Glycerol Conversion with Hydrogen Production Using Alloyed Electrocatalysts. Yang T; Shen Y Langmuir; 2023 Sep; 39(36):12855-12864. PubMed ID: 37646259 [TBL] [Abstract][Full Text] [Related]
18. Stimulating Electron Delocalization of Lanthanide Elements through High-Entropy Confinement to Promote Electrocatalytic Water Splitting. Jiang Y; Liang Z; Liu JC; Fu H; Yan CH; Du Y ACS Nano; 2024 Jul; 18(29):19137-19149. PubMed ID: 38981052 [TBL] [Abstract][Full Text] [Related]
19. Synergistic Lewis and Brønsted Acid Sites Promote OH* Formation and Enhance Formate Selectivity: Towards High-efficiency Glycerol Valorization. Ma J; Wang X; Song J; Tang Y; Sun T; Liu L; Wang J; Wang J; Yang M Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202319153. PubMed ID: 38356309 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous Anodic and Cathodic Formate Production in a Paired Electrolyzer by CO Junqueira JRC; Das D; Cathrin Brix A; Dieckhöfer S; Weidner J; Wang X; Shi J; Schuhmann W ChemSusChem; 2023 Jun; 16(11):e202202349. PubMed ID: 36897020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]