These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35404940)

  • 1. Performance comparison of structured [Formula: see text] based looptune and LQR for a 4-DOF robotic manipulator.
    Asghar A; Iqbal M; Khaliq A; Rehman SU; Iqbal J
    PLoS One; 2022; 17(4):e0266728. PubMed ID: 35404940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of six degree-of-freedom high-precision robotic phantom on commercial industrial robotic manipulator.
    Fujii F; Nonomura T; Shiinoki T
    Biomed Phys Eng Express; 2021 Aug; 7(5):. PubMed ID: 34330110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation Analysis of Linear Quadratic Regulator Control of Sagittal-Plane Human Walking-Implications for Exoskeletons.
    Nataraj R; van den Bogert AJ
    J Biomech Eng; 2017 Oct; 139(10):. PubMed ID: 28787476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload.
    Sharma R; Gaur P; Mittal AP
    ISA Trans; 2015 Sep; 58():279-91. PubMed ID: 25896827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 2-Dof LQR based PID controller for integrating processes considering robustness/performance tradeoff.
    Srivastava S; Pandit VS
    ISA Trans; 2017 Nov; 71(Pt 2):426-439. PubMed ID: 28941953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics analysis of permanent magnet synchronous motor speed control with enhanced state feedback controller using a linear quadratic regulator.
    Omeje CO; Salau AO; Eya CU
    Heliyon; 2024 Feb; 10(4):e26018. PubMed ID: 38379983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optimal PID controller via LQR for standard second order plus time delay systems.
    Srivastava S; Misra A; Thakur SK; Pandit VS
    ISA Trans; 2016 Jan; 60():244-253. PubMed ID: 26654724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous Collision Avoidance Using MPC with LQR-Based Weight Transformation.
    Taherian S; Halder K; Dixit S; Fallah S
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34201820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LQR-MPC-Based Trajectory-Tracking Controller of Autonomous Vehicle Subject to Coupling Effects and Driving State Uncertainties.
    Yuan T; Zhao R
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A PI Control Method with HGSO Parameter Regulator for Trajectory Planning of 9-DOF Redundant Manipulator.
    Liu M; Liu T; Zhu M; Chen L
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-objective LQR with optimum weight selection to design FOPID controllers for delayed fractional order processes.
    Das S; Pan I; Das S
    ISA Trans; 2015 Sep; 58():35-49. PubMed ID: 26096954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Output Feedback Q-Learning Control for the Discrete-Time Linear Quadratic Regulator Problem.
    Rizvi SAA; Lin Z
    IEEE Trans Neural Netw Learn Syst; 2019 May; 30(5):1523-1536. PubMed ID: 30296242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of quadratic linearization state feedback control with hysteresis reference reformer to improve the dynamic response of interior permanent magnet synchronous motors.
    Madanzadeh S; Abedini A; Radan A; Ro JS
    ISA Trans; 2020 Apr; 99():167-190. PubMed ID: 31522818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of robust control method for the flexible manipulator in reliable operation of medical robots during COVID-19 pandemic.
    Jayaswal K; Palwalia DK; Kumar S
    Microsyst Technol; 2021; 27(5):2103-2116. PubMed ID: 33082624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal time-varying postural control in a single-link neuromechanical model with feedback latencies.
    Iqbal K
    Biol Cybern; 2020 Oct; 114(4-5):485-497. PubMed ID: 32865604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust LQR-Based Neural-Fuzzy Tracking Control for a Lower Limb Exoskeleton System with Parametric Uncertainties and External Disturbances.
    Narayan J; Dwivedy SK
    Appl Bionics Biomech; 2021; 2021():5573041. PubMed ID: 34194541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on trajectory tracking control of 7-DOF picking manipulator.
    Cong S; Liang C
    Sci Prog; 2021; 104(1):368504211003383. PubMed ID: 33749404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement Learning-Based Model-Free Controller for Feedback Stabilization of Robotic Systems.
    Singh R; Bhushan B
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7059-7073. PubMed ID: 35015649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement Learning-Based Linear Quadratic Regulation of Continuous-Time Systems Using Dynamic Output Feedback.
    Rizvi SAA; Lin Z
    IEEE Trans Cybern; 2019 Jan; ():. PubMed ID: 30605117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Generalized Hamilton Robust Control Scheme of Trajectory Tracking for Intelligent Vehicles.
    Zhang Y; Pei W; Zhang Q; Ma B
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.