These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35405130)

  • 1. Thermodynamic evaluation of solar assisted ZnO/Zn thermochemical CO
    Bhosale RR; Gupta RB; Shende RV
    Environ Res; 2022 Sep; 212(Pt B):113266. PubMed ID: 35405130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar thermochemical CO
    Wang L; Ma T; Dai S; Ren T; Chang Z; Fu M; Li X; Li Y
    RSC Adv; 2020 Sep; 10(59):35740-35752. PubMed ID: 35517063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of Oxygen Carrier Materials and Related Thermochemical Redox Processes for Concentrating Solar Thermal Applications.
    Abanades S
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of the Two-Step H₂O/CO₂-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions.
    Loutzenhiser PG; Meier A; Steinfeld A
    Materials (Basel); 2010 Nov; 3(11):4922-4938. PubMed ID: 28883361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Thermodynamic Efficiency Limit of Isothermal Solar Fuel Generation from H
    Wang H; Kong H; Wang J; Liu M; Su B; Lundin SB
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A solar tower fuel plant for the thermochemical production of kerosene from H
    Zoller S; Koepf E; Nizamian D; Stephan M; Patané A; Haueter P; Romero M; González-Aguilar J; Lieftink D; de Wit E; Brendelberger S; Sizmann A; Steinfeld A
    Joule; 2022 Jul; 6(7):1606-1616. PubMed ID: 35915707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor.
    Welte M; Barhoumi R; Zbinden A; Scheffe JR; Steinfeld A
    Ind Eng Chem Res; 2016 Oct; 55(40):10618-10625. PubMed ID: 27853339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-temperature isothermal chemical cycling for solar-driven fuel production.
    Hao Y; Yang CK; Haile SM
    Phys Chem Chem Phys; 2013 Oct; 15(40):17084-92. PubMed ID: 24002380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation.
    Chueh WC; Haile SM
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3269-94. PubMed ID: 20566511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review of Solar Thermochemical CO
    Pullar RC; Novais RM; Caetano APF; Barreiros MA; Abanades S; Oliveira FAC
    Front Chem; 2019; 7():601. PubMed ID: 31552219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ce K edge XAS of ceria-based redox materials under realistic conditions for the two-step solar thermochemical dissociation of water and/or CO2.
    Rothensteiner M; Sala S; Bonk A; Vogt U; Emerich H; van Bokhoven JA
    Phys Chem Chem Phys; 2015 Oct; 17(40):26988-96. PubMed ID: 26412705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar-Driven Thermochemical Splitting of CO
    Tou M; Michalsky R; Steinfeld A
    Joule; 2017 Sep; 1(1):146-154. PubMed ID: 29034368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities.
    Furler P; Scheffe J; Marxer D; Gorbar M; Bonk A; Vogt U; Steinfeld A
    Phys Chem Chem Phys; 2014 Jun; 16(22):10503-11. PubMed ID: 24736455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic enhancement of production of solar thermochemical fuels: opportunities and limitations.
    Coronado JM; Bayón A
    Phys Chem Chem Phys; 2023 Jul; 25(26):17092-17106. PubMed ID: 37340776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper ferrite and cobalt oxide two-layer coated macroporous SiC substrate for efficient CO
    Guene Lougou B; Geng B; Jiang B; Zhang H; Sun Q; Shuai Y; Qu Z; Zhao J; Wang CH
    J Colloid Interface Sci; 2022 Dec; 627():516-531. PubMed ID: 35870404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.
    Falter C; Batteiger V; Sizmann A
    Environ Sci Technol; 2016 Jan; 50(1):470-7. PubMed ID: 26641878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Zn Particle Oxidation by H
    Weibel D; Jovanovic ZR; Gálvez E; Steinfeld A
    Chem Mater; 2014 Nov; 26(22):6486-6495. PubMed ID: 26692637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solar-driven thermochemical conversion of H
    Wei L; Pan Z; Shi X; Esan OC; Li G; Qi H; Wu Q; An L
    iScience; 2023 Nov; 26(11):108127. PubMed ID: 37876816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosted Solar Thermochemical Low-Temperature CO
    Zong T; Shen Q; Han Y; Ruan C; Liu S; Wang C; Tian M; Li L; Zhu Y; Wang X
    ChemSusChem; 2024 Aug; ():e202401295. PubMed ID: 39148488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.
    Falter C; Pitz-Paal R
    Environ Sci Technol; 2017 Nov; 51(21):12938-12947. PubMed ID: 28946739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.