These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35405401)

  • 1. A new active contraction model for the myocardium using a modified hill model.
    Guan D; Gao H; Cai L; Luo X
    Comput Biol Med; 2022 Jun; 145():105417. PubMed ID: 35405401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of active contraction in cardiac muscle: Part II--Cylindrical models of the systolic left ventricle.
    Guccione JM; Waldman LK; McCulloch AD
    J Biomech Eng; 1993 Feb; 115(1):82-90. PubMed ID: 8445902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determinants of velocity of sarcomere shortening in mammalian myocardium.
    ter Keurs HE; de Tombe PP
    Adv Exp Med Biol; 1993; 332():649-64; discussion 664-5. PubMed ID: 8109376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Generalized Hill Model: A Kinematic Approach Towards Active Muscle Contraction.
    Göktepe S; Menzel A; Kuhl E
    J Mech Phys Solids; 2014 Dec; 72():20-39. PubMed ID: 25221354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium.
    Linke WA; Fernandez JM
    J Muscle Res Cell Motil; 2002; 23(5-6):483-97. PubMed ID: 12785099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntary EMG-to-force estimation with a multi-scale physiological muscle model.
    Hayashibe M; Guiraud D
    Biomed Eng Online; 2013 Sep; 12():86. PubMed ID: 24007560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A macroscopic ansatz to deduce the Hill relation.
    Günther M; Schmitt S
    J Theor Biol; 2010 Apr; 263(4):407-18. PubMed ID: 20045704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of left ventricle during cardiac cycles in viscoelasticity.
    Shen JJ; Xu FY; Yang WA
    Comput Biol Med; 2016 Aug; 75():63-73. PubMed ID: 27253618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hill-type muscle model with serial damping and eccentric force-velocity relation.
    Haeufle DF; Günther M; Bayer A; Schmitt S
    J Biomech; 2014 Apr; 47(6):1531-6. PubMed ID: 24612719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basis of passive tension and stiffness in isolated rabbit myofibrils.
    Bartoo ML; Linke WA; Pollack GH
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C266-76. PubMed ID: 9252465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple model of cardiac muscle for multiscale simulation: Passive mechanics, crossbridge kinetics and calcium regulation.
    Syomin FA; Tsaturyan AK
    J Theor Biol; 2017 May; 420():105-116. PubMed ID: 28223172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheology of myocardium. The relation between force, velocity, sarcomere length and activation in rat cardiac muscle.
    ter Keurs HE; de Tombe PP; Backx PH; Iwazumi T
    Biorheology; 1991; 28(3-4):161-70. PubMed ID: 1932708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics.
    Granzier H; Helmes M; Trombitás K
    Biophys J; 1996 Jan; 70(1):430-42. PubMed ID: 8770219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium.
    de Tombe PP; ter Keurs HE
    J Physiol; 1992 Aug; 454():619-42. PubMed ID: 1474506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions.
    Sandercock TG; Heckman CJ
    J Neurophysiol; 1997 Mar; 77(3):1538-52. PubMed ID: 9084618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes.
    Land S; Park-Holohan SJ; Smith NP; Dos Remedios CG; Kentish JC; Niederer SA
    J Mol Cell Cardiol; 2017 May; 106():68-83. PubMed ID: 28392437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles.
    Herzog W; Leonard TR
    J Biomech; 2000 May; 33(5):531-42. PubMed ID: 10708773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual and passive force enhancement in skinned cardiac fibre bundles.
    Boldt K; Han SW; Joumaa V; Herzog W
    J Biomech; 2020 Aug; 109():109953. PubMed ID: 32807325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcomere length dependence of the force-velocity relation in single frog muscle fibers.
    Granzier HL; Burns DH; Pollack GH
    Biophys J; 1989 Mar; 55(3):499-507. PubMed ID: 2784695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial and ventricular function. Part I: Isolated muscle.
    Strobeck JE; Sonnenblick EH
    Herz; 1981 Oct; 6(5):261-74. PubMed ID: 7298006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.