BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35405520)

  • 1. Design and assessment of the biomimetic capabilities of a Voronoi-based cancellous microstructure.
    Frayssinet E; Colabella L; Cisilino AP
    J Mech Behav Biomed Mater; 2022 Jun; 130():105186. PubMed ID: 35405520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale design of artificial bones with biomimetic elastic microstructures.
    Colabella L; Cisilino A; Fachinotti V; Capiel C; Kowalczyk P
    J Mech Behav Biomed Mater; 2020 Aug; 108():103748. PubMed ID: 32310104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mimetization of the elastic properties of cancellous bone via a parameterized cellular material.
    Colabella L; Cisilino AP; Häiat G; Kowalczyk P
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1485-1502. PubMed ID: 28374083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and properties of 3D scaffolds for bone tissue engineering.
    Gómez S; Vlad MD; López J; Fernández E
    Acta Biomater; 2016 Sep; 42():341-350. PubMed ID: 27370904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Voronoi tessellation as a method to design anisotropic and biomimetic implants.
    Deering J; Dowling KI; DiCecco LA; McLean GD; Yu B; Grandfield K
    J Mech Behav Biomed Mater; 2021 Apr; 116():104361. PubMed ID: 33550142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and properties of biomimetic irregular scaffolds for bone tissue engineering.
    Chen H; Liu Y; Wang C; Zhang A; Chen B; Han Q; Wang J
    Comput Biol Med; 2021 Mar; 130():104241. PubMed ID: 33529844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthotropic properties of cancellous bone modelled as parameterized cellular material.
    Kowalczyk P
    Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):135-47. PubMed ID: 16880164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cancellous bone multiscale morphology-elasticity relationship.
    Agić A; Nikolić V; Mijović B
    Coll Antropol; 2006 Jun; 30(2):409-14. PubMed ID: 16848160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells.
    Kowalczyk P
    J Biomech; 2003 Jul; 36(7):961-72. PubMed ID: 12757805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic open cell foams versus a healthy human vertebra: Anisotropy, fluid flow and μ-CT structural studies.
    Gómez González S; Valera Jiménez JF; Cabestany Bastida G; Vlad MD; López López J; Fernández Aguado E
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110404. PubMed ID: 31923939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.
    Maquer G; Musy SN; Wandel J; Gross T; Zysset PK
    J Bone Miner Res; 2015 Jun; 30(6):1000-8. PubMed ID: 25529534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport properties.
    Kohles SS; Roberts JB
    J Biomech Eng; 2002 Oct; 124(5):521-6. PubMed ID: 12405594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of broadband ultrasound attenuation on the elastic anisotropy of trabecular bone.
    Han SM; Rho JY
    Proc Inst Mech Eng H; 1998; 212(3):223-7. PubMed ID: 9695641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue.
    Salguero L; Saadat F; Sevostianov I
    J Biomech; 2014 Oct; 47(13):3279-87. PubMed ID: 25234350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Material anisotropy and elasticity of cortical and trabecular bone in the adult mouse femur via AFM indentation.
    Asgari M; Abi-Rafeh J; Hendy GN; Pasini D
    J Mech Behav Biomed Mater; 2019 May; 93():81-92. PubMed ID: 30776678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone.
    Kabel J; van Rietbergen B; Dalstra M; Odgaard A; Huiskes R
    J Biomech; 1999 Jul; 32(7):673-80. PubMed ID: 10400354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly.
    Cai X; Follet H; Peralta L; Gardegaront M; Farlay D; Gauthier R; Yu B; Gineyts E; Olivier C; Langer M; Gourrier A; Mitton D; Peyrin F; Grimal Q; Laugier P
    Acta Biomater; 2019 May; 90():254-266. PubMed ID: 30922952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaussian random field-based characterization and reconstruction of cancellous bone microstructure considering the constraint of correlation structure.
    He L; Zhao M; Cheung JPY; Zhang T; Ren X
    J Mech Behav Biomed Mater; 2024 Apr; 152():106443. PubMed ID: 38308976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictions of the elastic modulus of trabecular bone in the femoral head and the intertrochanter: a solitary wave-based approach.
    Yoon S; Schiffer A; Jang IG; Lee S; Kim TY
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1733-1749. PubMed ID: 34110537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabric and elastic principal directions of cancellous bone are closely related.
    Odgaard A; Kabel J; van Rietbergen B; Dalstra M; Huiskes R
    J Biomech; 1997 May; 30(5):487-95. PubMed ID: 9109560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.