These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35406152)

  • 1. Rheology Applied to Microgels: Brief (Revision of the) State of the Art.
    Echeverría C; Mijangos C
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Way to Predict Gold Nanoparticles/Polymer Hybrid Microgel Agglomeration Based on Rheological Studies.
    Echeverría C; Mijangos C
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31640156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure-driven self-assembly and rheological properties of multi-responsive soft microgel suspensions.
    Dieuzy E; Aguirre G; Auguste S; Chougrani K; Alard V; Billon L; Derail C
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):806-815. PubMed ID: 32814199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study.
    Stieger M; Pedersen JS; Lindner P; Richtering W
    Langmuir; 2004 Aug; 20(17):7283-92. PubMed ID: 15301516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyelectrolyte scaling laws for microgel yielding near jamming.
    Bhattacharjee T; Kabb CP; O'Bryan CS; Urueña JM; Sumerlin BS; Sawyer WG; Angelini TE
    Soft Matter; 2018 Feb; 14(9):1559-1570. PubMed ID: 29450413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hard and soft colloids at fluid interfaces: Adsorption, interactions, assembly & rheology.
    Deshmukh OS; van den Ende D; Stuart MC; Mugele F; Duits MH
    Adv Colloid Interface Sci; 2015 Aug; 222():215-27. PubMed ID: 25288385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear and nonlinear viscoelasticity of concentrated thermoresponsive microgel suspensions.
    Chaudhary G; Ghosh A; Kang JG; Braun PV; Ewoldt RH; Schweizer KS
    J Colloid Interface Sci; 2021 Nov; 601():886-898. PubMed ID: 34186277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscosity of soft spherical micro-hydrogel suspensions.
    Shewan HM; Stokes JR
    J Colloid Interface Sci; 2015 Mar; 442():75-81. PubMed ID: 25521552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UCST-like hybrid PAAm-AA/Fe3O4 microgels. Effect of Fe3O4 nanoparticles on morphology, thermosensitivity and elasticity.
    Echeverria C; Mijangos C
    Langmuir; 2011 Jul; 27(13):8027-35. PubMed ID: 21630668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(N-isopropylacrylamide) microgels at the oil-water interface: temperature effect.
    Li Z; Richtering W; Ngai T
    Soft Matter; 2014 Sep; 10(33):6182-91. PubMed ID: 25010011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cross-linking density on the rheological behavior of ultra-soft chitosan microgels at the oil-water interface.
    Ma X; Kong S; Li Z; Zhen S; Sun F; Yang N
    J Colloid Interface Sci; 2024 Oct; 672():574-588. PubMed ID: 38852358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional colloidal crystal of soft microgel spheres: Development, preparation and applications.
    Li F; Luo Y; Feng X; Guo Y; Zhou Y; He D; Xie Z; Zhang H; Liu Y
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112358. PubMed ID: 35101822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of Confined Microgel Liquids: Weakened Spatial Confinement Effect by Microgel Particle Compliance.
    Seekell RP; Lin K; Zhu Y
    Langmuir; 2021 May; 37(17):5299-5305. PubMed ID: 33886325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft water-soluble microgel dispersions: structure and rheology.
    Omari A; Tabary R; Rousseau D; Calderon FL; Monteil J; Chauveteau G
    J Colloid Interface Sci; 2006 Oct; 302(2):537-46. PubMed ID: 16928380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pectin-based microgels for rheological modification in the dilute to concentrated regimes.
    Stubley SJ; Cayre OJ; Murray BS; Celigueta Torres I
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):684-695. PubMed ID: 35944299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractal structures of the hydrogels formed in situ from poly(N-isopropylacrylamide) microgel dispersions.
    Liao W; Zhang Y; Guan Y; Zhu XX
    Langmuir; 2012 Jul; 28(29):10873-80. PubMed ID: 22769973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in cellulose microgels: Preparations and functionalized applications.
    Yang Y; Sha L; Zhao H; Guo Z; Wu M; Lu P
    Adv Colloid Interface Sci; 2023 Jan; 311():102815. PubMed ID: 36427465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emulsion Microgel Particles as High-Performance Bio-Lubricants.
    Torres O; Andablo-Reyes E; Murray BS; Sarkar A
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):26893-26905. PubMed ID: 30036468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoresponsive microgels at the air-water interface: the impact of the swelling state on interfacial conformation.
    Maldonado-Valderrama J; Del Castillo-Santaella T; Adroher-Benítez I; Moncho-Jordá A; Martín-Molina A
    Soft Matter; 2016 Dec; 13(1):230-238. PubMed ID: 27427242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial layers of stimuli-responsive poly-(N-isopropylacrylamide-co-methacrylicacid) (PNIPAM-co-MAA) microgels characterized by interfacial rheology and compression isotherms.
    Brugger B; Vermant J; Richtering W
    Phys Chem Chem Phys; 2010 Nov; 12(43):14573-8. PubMed ID: 20941404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.