These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35406193)

  • 1. Assessment of the Eco-Efficiency of the Circular Economy in the Recovery of Cellulose from the Shredding of Textile Waste.
    de Oliveira Neto GC; Teixeira MM; Souza GLV; Arns VD; Tucci HNP; Amorim M
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobilisation of textile waste to recover high added value products and energy for the transition to circular economy.
    Papamichael I; Voukkali I; Economou F; Loizia P; Demetriou G; Esposito M; Naddeo V; Liscio MC; Sospiro P; Zorpas AA
    Environ Res; 2024 Feb; 242():117716. PubMed ID: 37995999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valorisation of cotton post-industrial textile waste into lactic acid: chemo-mechanical pretreatment, separate hydrolysis and fermentation using engineered yeast.
    Simonetti M; Butti P; Di Lorenzo RD; Mapelli V; Branduardi P
    Microb Cell Fact; 2024 Apr; 23(1):106. PubMed ID: 38600576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Death by waste: Fashion and textile circular economy case.
    Shirvanimoghaddam K; Motamed B; Ramakrishna S; Naebe M
    Sci Total Environ; 2020 May; 718():137317. PubMed ID: 32088483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres.
    Landi D; Gigli S; Germani M; Marconi M
    Waste Manag; 2018 May; 75():187-204. PubMed ID: 29454817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Economic and environmental benefits by means of recycling processes grounded in the CE: Case studies in the metal mechanical sector.
    Cardoso de Oliveira Neto G; de Jesus Cardoso Correia A; Cesar Lucato W
    Waste Manag; 2023 Jun; 164():250-259. PubMed ID: 37086607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eco-Sustainability of the Textile Production: Waste Recovery and Current Recycling in the Composites World.
    Patti A; Cicala G; Acierno D
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33396936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Natural Fibre-Reinforced Semi-Finished Products with Bio-Based Matrix for Eco-Friendly Composites.
    Möhl C; Weimer T; Caliskan M; Baz S; Bauder HJ; Gresser GT
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects.
    Pensupa N; Leu SY; Hu Y; Du C; Liu H; Jing H; Wang H; Lin CSK
    Top Curr Chem (Cham); 2017 Aug; 375(5):76. PubMed ID: 28815435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State of the art of post-consumer textile waste upcycling to reach the zero waste milestone.
    Stanescu MD
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14253-14270. PubMed ID: 33515405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim.
    Manian AP; Müller S; Braun DE; Pham T; Bechtold T
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycled fibers from pre- and post-consumer textile waste as blend constituents in manufacturing 100% cotton yarns in ring spinning: A sustainable and eco-friendly approach.
    Arafat Y; Uddin AJ
    Heliyon; 2022 Nov; 8(11):e11275. PubMed ID: 36339750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of Waste Cotton Textile Containing Elastane Fibers through Dissolution and Regeneration.
    Wang L; Huang S; Wang Y
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling of textile wastes, by acid hydrolysis, into new cellulosic raw materials.
    Costa C; Viana A; Silva C; Marques EF; Azoia NG
    Waste Manag; 2022 Nov; 153():99-109. PubMed ID: 36067549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Development of Efficient Contaminated Polymer Materials Shredding in Recycling Processes.
    Flizikowski J; Kruszelnicka W; Macko M
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33652828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers.
    Haslinger S; Hummel M; Anghelescu-Hakala A; Määttänen M; Sixta H
    Waste Manag; 2019 Sep; 97():88-96. PubMed ID: 31447031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A circular economy use of recovered sludge cellulose in wood plastic composite production: Recycling and eco-efficiency assessment.
    Zhou Y; Stanchev P; Katsou E; Awad S; Fan M
    Waste Manag; 2019 Nov; 99():42-48. PubMed ID: 31472439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Market assessment to improve fibre recycling within the EU textile sector.
    Boschmeier E; Ipsmiller W; Bartl A
    Waste Manag Res; 2024 Feb; 42(2):135-145. PubMed ID: 37313862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of water as raw material on material circularity - A case study from the Hungarian food sector.
    H-Hargitai R; Somogyi V
    Heliyon; 2023 Jul; 9(7):e17587. PubMed ID: 37483782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling of Nanocellulose from Polyester-Cotton Textile Waste for Modification of Film Composites.
    Srichola P; Witthayolankowit K; Sukyai P; Sampoompuang C; Lobyam K; Kampakun P; Toomtong R
    Polymers (Basel); 2023 Aug; 15(15):. PubMed ID: 37571218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.