BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 35406237)

  • 1. Modification of Covalent Triazine-Based Frameworks for Photocatalytic Hydrogen Generation.
    Xie J; Fang Z; Wang H
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Design of Covalent Triazine Frameworks with Anisotropic Charge Migration for Photocatalytic Hydrogen Production.
    Lan ZA; Chi X; Wu M; Zhang X; Chen X; Zhang G; Wang X
    Small; 2022 Apr; 18(16):e2200129. PubMed ID: 35261149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution on Phosphorus-Doped Covalent Triazine-Based Frameworks.
    Cheng Z; Fang W; Zhao T; Fang S; Bi J; Liang S; Li L; Yu Y; Wu L
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41415-41421. PubMed ID: 30383354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling CsPbBr
    Wang Q; Wang J; Wang JC; Hu X; Bai Y; Zhong X; Li Z
    ChemSusChem; 2021 Feb; 14(4):1131-1139. PubMed ID: 33411408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent Triazine Frameworks (CTFs): Synthesis, Crystallization, and Photocatalytic Water Splitting.
    Sun R; Tan B
    Chemistry; 2023 Mar; 29(17):e202203077. PubMed ID: 36504463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Nitrogen Atom Introduction on the Photocatalytic Hydrogen Evolution Activity of Covalent Triazine Frameworks: Experimental and Theoretical Study.
    Han X; Zhao F; Shang Q; Zhao J; Zhong X; Zhang J
    ChemSusChem; 2022 Sep; 15(18):e202200828. PubMed ID: 35869028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversing electron transfer in a covalent triazine framework for efficient photocatalytic hydrogen evolution.
    Zhang L; Zhang Y; Huang X; Bi Y
    Chem Sci; 2022 Jul; 13(27):8074-8079. PubMed ID: 35919433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent Triazine Framework Films through In-Situ Growth for Photocatalytic Hydrogen Evolution.
    Guo Y; Hu X; Sun R; Wang X; Tan B
    ChemSusChem; 2023 Oct; 16(20):e202300759. PubMed ID: 37365972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MoS
    Jiang Q; Sun L; Bi J; Liang S; Li L; Yu Y; Wu L
    ChemSusChem; 2018 Mar; 11(6):1108-1113. PubMed ID: 29405652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Design and Application of Covalent Organic Frameworks for Solar Fuel Production.
    Verma P; Le Brocq JJM; Raja R
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathways towards Boosting Solar-Driven Hydrogen Evolution of Conjugated Polymers.
    Liu Y; Li B; Xiang Z
    Small; 2021 Aug; 17(34):e2007576. PubMed ID: 34160904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent Triazine Frameworks via a Low-Temperature Polycondensation Approach.
    Wang K; Yang LM; Wang X; Guo L; Cheng G; Zhang C; Jin S; Tan B; Cooper A
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14149-14153. PubMed ID: 28926688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing a novel family of halogen-doped covalent triazine-based frameworks as efficient metal-free photocatalysts for hydrogen production.
    Cheng Z; Zheng K; Lin G; Fang S; Li L; Bi J; Shen J; Wu L
    Nanoscale Adv; 2019 Jul; 1(7):2674-2680. PubMed ID: 36132739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylene and Diacetylene Functionalized Covalent Triazine Frameworks as Metal-Free Photocatalysts for Hydrogen Peroxide Production: A New Two-Electron Water Oxidation Pathway.
    Chen L; Wang L; Wan Y; Zhang Y; Qi Z; Wu X; Xu H
    Adv Mater; 2020 Jan; 32(2):e1904433. PubMed ID: 31782554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing Donor-Acceptor Interactions and Particle Dispersibility of Covalent Triazine Frameworks for Higher Crystallinity and Enhanced Photocatalytic Activity.
    Wang H; Shi L; Qu Z; Zhang L; Wang X; Wang Y; Liu S; Ma H; Guo Z
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2296-2308. PubMed ID: 38189244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Z-Scheme Heterojunction of SnS
    Guo S; Yang P; Zhao Y; Yu X; Wu Y; Zhang H; Yu B; Han B; George MW; Liu Z
    ChemSusChem; 2020 Dec; 13(23):6278-6283. PubMed ID: 32291955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for Enhancing the Photocatalytic and Electrocatalytic Efficiency of Covalent Triazine Frameworks for CO
    Liu G; Liu S; Lai C; Qin L; Zhang M; Li Y; Xu M; Ma D; Xu F; Liu S; Dai M; Chen Q
    Small; 2024 May; 20(22):e2307853. PubMed ID: 38143294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory-Guided Experimental Design of Covalent Triazine Frameworks for Efficient Photocatalytic Hydrogen Production.
    Zhao C; Li Z; Wu X; Su H; Bai FQ; Ran X; Yang L; Fang W; Yang X
    Small; 2024 Apr; ():e2400541. PubMed ID: 38644221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent Triazine-Based Frameworks as Visible Light Photocatalysts for the Splitting of Water.
    Bi J; Fang W; Li L; Wang J; Liang S; He Y; Liu M; Wu L
    Macromol Rapid Commun; 2015 Oct; 36(20):1799-805. PubMed ID: 26292975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene Oxide-Assisted Covalent Triazine Framework for Boosting Photocatalytic H
    Liu C; Wang YC; Yang Q; Li XY; Yi F; Liu KW; Cao HM; Wang CJ; Yan HJ
    Chemistry; 2021 Sep; 27(51):13059-13066. PubMed ID: 34190368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.