These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 35406244)
21. Three-dimensional electrospun poly(lactide-co-ɛ-caprolactone) for small-diameter vascular grafts. Mun CH; Jung Y; Kim SH; Lee SH; Kim HC; Kwon IK; Kim SH Tissue Eng Part A; 2012 Aug; 18(15-16):1608-16. PubMed ID: 22462723 [TBL] [Abstract][Full Text] [Related]
22. A new method for the preparation of three-layer vascular stents: a preliminary study on the preparation of biomimetic three-layer vascular stents using a three-stage electrospun membrane. Chen X; Chen D; Ai X; Hu R; Zhang H Biomed Mater; 2020 Jul; 15(5):055010. PubMed ID: 32392542 [TBL] [Abstract][Full Text] [Related]
23. Long-term evaluation of vascular grafts with circumferentially aligned microfibers in a rat abdominal aorta replacement model. Li W; Chen J; Xu P; Zhu M; Wu Y; Wang Z; Zhao T; Cheng Q; Wang K; Fan G; Zhu Y; Kong D J Biomed Mater Res B Appl Biomater; 2018 Oct; 106(7):2596-2604. PubMed ID: 29412507 [TBL] [Abstract][Full Text] [Related]
24. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet. Pangesty AI; Arahira T; Todo M J Funct Biomater; 2016 Jun; 7(2):. PubMed ID: 27271675 [TBL] [Abstract][Full Text] [Related]
25. The mechanical performance of weft-knitted/electrospun bilayer small diameter vascular prostheses. Xie Y; Guan Y; Kim SH; King MW J Mech Behav Biomed Mater; 2016 Aug; 61():410-418. PubMed ID: 27111627 [TBL] [Abstract][Full Text] [Related]
26. The behavior of vascular smooth muscle cells and platelets onto epigallocatechin gallate-releasing poly(l-lactide-co-epsilon-caprolactone) as stent-coating materials. Cho HH; Han DW; Matsumura K; Tsutsumi S; Hyon SH Biomaterials; 2008 Mar; 29(7):884-93. PubMed ID: 18031806 [TBL] [Abstract][Full Text] [Related]
27. Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF. Han F; Jia X; Dai D; Yang X; Zhao J; Zhao Y; Fan Y; Yuan X Biomaterials; 2013 Oct; 34(30):7302-13. PubMed ID: 23830580 [TBL] [Abstract][Full Text] [Related]
28. Design and Fabrication of a Biomimetic Vascular Scaffold Promoting in Situ Endothelialization and Tunica Media Regeneration. Wu T; Zhang J; Wang Y; Sun B; Yin M; Bowlin GL; Mo X ACS Appl Bio Mater; 2018 Sep; 1(3):833-844. PubMed ID: 34996175 [TBL] [Abstract][Full Text] [Related]
29. Fabrication of a new tubular fibrous PLCL scaffold for vascular tissue engineering. Kim SH; Kwon JH; Chung MS; Chung E; Jung Y; Kim SH; Kim YH J Biomater Sci Polym Ed; 2006; 17(12):1359-74. PubMed ID: 17260508 [TBL] [Abstract][Full Text] [Related]
30. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
31. Electrospun vascular grafts fabricated from poly(L-lactide-co-ε-caprolactone) used as a bypass for the rabbit carotid artery. Horakova J; Mikes P; Lukas D; Saman A; Jencova V; Klapstova A; Svarcova T; Ackermann M; Novotny V; Kalab M; Lonsky V; Bartos M; Rampichova M; Litvinec A; Kubikova T; Tomasek P; Tonar Z Biomed Mater; 2018 Sep; 13(6):065009. PubMed ID: 30177582 [TBL] [Abstract][Full Text] [Related]
32. Coaxially-structured fibres with tailored material properties for vascular graft implant. Johnson R; Ding Y; Nagiah N; Monnet E; Tan W Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():1-11. PubMed ID: 30678891 [TBL] [Abstract][Full Text] [Related]
33. Silk Vascular Grafts with Optimized Mechanical Properties for the Repair and Regeneration of Small Caliber Blood Vessels. Valsecchi E; Biagiotti M; Alessandrino A; Gastaldi D; Vena P; Freddi G Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629761 [TBL] [Abstract][Full Text] [Related]
34. Gelatin-apatite bone mimetic co-precipitates incorporated within biopolymer matrix to improve mechanical and biological properties useful for hard tissue repair. Won JE; El-Fiqi A; Jegal SH; Han CM; Lee EJ; Knowles JC; Kim HW J Biomater Appl; 2014 Apr; 28(8):1213-25. PubMed ID: 23985536 [TBL] [Abstract][Full Text] [Related]
35. An integrated strategy for designing and fabricating triple-layer vascular graft with oriented microgrooves to promote endothelialization. Chen X; Yao Y; Liu S; Hu Q J Biomater Appl; 2021 Aug; 36(2):297-310. PubMed ID: 33709831 [TBL] [Abstract][Full Text] [Related]
36. Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. Jeong SI; Kim SH; Kim YH; Jung Y; Kwon JH; Kim BS; Lee YM J Biomater Sci Polym Ed; 2004; 15(5):645-60. PubMed ID: 15264665 [TBL] [Abstract][Full Text] [Related]
37. In situ blood vessel regeneration using neuropeptide substance P-conjugated small-diameter vascular grafts. Shafiq M; Wang L; Zhi D; Zhang Q; Wang K; Wang L; Kim DH; Kong D; Kim SH J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1669-1683. PubMed ID: 30315717 [TBL] [Abstract][Full Text] [Related]
38. Stiffness of Aligned Fibers Regulates the Phenotypic Expression of Vascular Smooth Muscle Cells. Yi B; Shen Y; Tang H; Wang X; Li B; Zhang Y ACS Appl Mater Interfaces; 2019 Feb; 11(7):6867-6880. PubMed ID: 30676736 [TBL] [Abstract][Full Text] [Related]
39. Effect of tourmaline nanoparticles on the anticoagulation and cytotoxicity of poly(l-lactide- Zhao T; Zhang H; Li P; Liang J RSC Adv; 2019 Jan; 9(2):704-710. PubMed ID: 35517608 [TBL] [Abstract][Full Text] [Related]
40. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone). Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]