These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 35406669)

  • 1. The Role of Airway Epithelial Cell Alarmins in Asthma.
    Whetstone CE; Ranjbar M; Omer H; Cusack RP; Gauvreau GM
    Cells; 2022 Mar; 11(7):. PubMed ID: 35406669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epithelial cell alarmin cytokines: Frontline mediators of the asthma inflammatory response.
    Duchesne M; Okoye I; Lacy P
    Front Immunol; 2022; 13():975914. PubMed ID: 36311787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sounding the alarmins-The role of alarmin cytokines in asthma.
    Gauvreau GM; Bergeron C; Boulet LP; Cockcroft DW; Côté A; Davis BE; Leigh R; Myers I; O'Byrne PM; Sehmi R
    Allergy; 2023 Feb; 78(2):402-417. PubMed ID: 36463491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TSLP and HMGB1: Inflammatory Targets and Potential Biomarkers for Precision Medicine in Asthma and COPD.
    Furci F; Murdaca G; Pelaia C; Imbalzano E; Pelaia G; Caminati M; Allegra A; Senna G; Gangemi S
    Biomedicines; 2023 Feb; 11(2):. PubMed ID: 36830972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-alarmin approaches entering clinical trials.
    Gauvreau GM; White L; Davis BE
    Curr Opin Pulm Med; 2020 Jan; 26(1):69-76. PubMed ID: 31408015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bronchial Allergen Challenge of Patients with Atopic Asthma Triggers an Alarmin (IL-33, TSLP, and IL-25) Response in the Airways Epithelium and Submucosa.
    Wang W; Li Y; Lv Z; Chen Y; Li Y; Huang K; Corrigan CJ; Ying S
    J Immunol; 2018 Oct; 201(8):2221-2231. PubMed ID: 30185520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TL1A is an epithelial alarmin that cooperates with IL-33 for initiation of allergic airway inflammation.
    Schmitt P; Duval A; Camus M; Lefrançais E; Roga S; Dedieu C; Ortega N; Bellard E; Mirey E; Mouton-Barbosa E; Burlet-Schiltz O; Gonzalez-de-Peredo A; Cayrol C; Girard JP
    J Exp Med; 2024 Jun; 221(6):. PubMed ID: 38597952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biologics and the lung: TSLP and other epithelial cell-derived cytokines in asthma.
    Mitchell PD; O'Byrne PM
    Pharmacol Ther; 2017 Jan; 169():104-112. PubMed ID: 27365223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epithelial-Derived Cytokines in Asthma.
    Mitchell PD; O'Byrne PM
    Chest; 2017 Jun; 151(6):1338-1344. PubMed ID: 27818325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antialarmins for treatment of asthma: future perspectives.
    Al-Sajee D; Oliveria JP; Sehmi R; Gauvreau GM
    Curr Opin Pulm Med; 2018 Jan; 24(1):32-41. PubMed ID: 29084017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Alarmins and anti-alarmin biologics in asthma].
    Görgülü B; Bavbek S
    Tuberk Toraks; 2018 Jun; 66(2):166-175. PubMed ID: 30246661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifactorial Causes and Consequences of TLSP Production, Function, and Release in the Asthmatic Airway.
    Brister DL; Omer H; Whetstone CE; Ranjbar M; Gauvreau GM
    Biomolecules; 2024 Mar; 14(4):. PubMed ID: 38672419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics.
    Porsbjerg CM; Sverrild A; Lloyd CM; Menzies-Gow AN; Bel EH
    Eur Respir J; 2020 Nov; 56(5):. PubMed ID: 32586879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epithelial alarmins: a new target to treat chronic respiratory diseases.
    Nedeva D; Kowal K; Mihaicuta S; Guidos Fogelbach G; Steiropoulos P; Jose Chong-Neto H; Tiotiu A
    Expert Rev Respir Med; 2023; 17(9):773-786. PubMed ID: 37746733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoclonal Antibodies Targeting Alarmins: A New Perspective for Biological Therapies of Severe Asthma.
    Pelaia C; Pelaia G; Longhini F; Crimi C; Calabrese C; Gallelli L; Sciacqua A; Vatrella A
    Biomedicines; 2021 Aug; 9(9):. PubMed ID: 34572294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Airway epithelial type-2 alarmin profiles: Blood eosinophil counts remain in memory.
    Vernisse C; Tuaillon E; Suehs C; Gras D; Bedin AS; Charriot J; Knabe L; Vachier I; Chanez P; Petit A; Bourdin A
    Eur J Immunol; 2023 Apr; 53(4):e2250101. PubMed ID: 36793156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting the Epithelium-Derived Innate Cytokines: From Bench to Bedside.
    Ham J; Shin JW; Ko BC; Kim HY
    Immune Netw; 2022 Feb; 22(1):e11. PubMed ID: 35291657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards precision medicine in COPD: Targeting type 2 cytokines and alarmins.
    Varricchi G; Poto R
    Eur J Intern Med; 2024 Jul; 125():28-31. PubMed ID: 38762432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Effects of Alarmins on Human and Mouse Basophils.
    Gambardella AR; Poto R; Tirelli V; Schroeder JT; Marone G; Mattei F; Varricchi G; Schiavoni G
    Front Immunol; 2022; 13():894163. PubMed ID: 35693823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sputum IL-25, IL-33 and TSLP, IL-23 and IL-36 in airway obstructive diseases. Reduced levels of IL-36 in eosinophilic phenotype.
    Moermans C; Damas K; Guiot J; Njock MS; Corhay JL; Henket M; Schleich F; Louis R
    Cytokine; 2021 Apr; 140():155421. PubMed ID: 33486314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.