These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of dietary energy source on in vitro substrate utilization and insulin sensitivity of muscle and adipose tissues of Angus and Wagyu steers. Rhoades RD; Sawyer JE; Chung KY; Schell ML; Lunt DK; Smith SB J Anim Sci; 2007 Jul; 85(7):1719-26. PubMed ID: 17339414 [TBL] [Abstract][Full Text] [Related]
3. Intrinsic properties of muscle satellite cells are changed in response to long-term selection of mice for different growth traits. Rehfeldt C; Walther K; Albrecht E; Nürnberg G; Renne U; Bünger L Cell Tissue Res; 2002 Dec; 310(3):339-48. PubMed ID: 12457233 [TBL] [Abstract][Full Text] [Related]
4. Increased insulin sensitivity and responsiveness of glucose metabolism in adipocytes from female versus male rats. Guerre-Millo M; Leturque A; Girard J; Lavau M J Clin Invest; 1985 Jul; 76(1):109-16. PubMed ID: 3894416 [TBL] [Abstract][Full Text] [Related]
5. [Prolonged effects of training on adipose tissue glucose metabolism and insulin responsiveness in adult rats (author's transl)]. Gommers A; Dehez-Delhaye M; Caucheteux D Diabete Metab; 1981 Jun; 7(2):121-6. PubMed ID: 7018945 [TBL] [Abstract][Full Text] [Related]
6. Altered body composition and metabolism in the male offspring of high fat-fed rats. Buckley AJ; Keserü B; Briody J; Thompson M; Ozanne SE; Thompson CH Metabolism; 2005 Apr; 54(4):500-7. PubMed ID: 15798958 [TBL] [Abstract][Full Text] [Related]
7. Marine n-3 fatty acids promote size reduction of visceral adipose depots, without altering body weight and composition, in male Wistar rats fed a high-fat diet. Rokling-Andersen MH; Rustan AC; Wensaas AJ; Kaalhus O; Wergedahl H; Røst TH; Jensen J; Graff BA; Caesar R; Drevon CA Br J Nutr; 2009 Oct; 102(7):995-1006. PubMed ID: 19397836 [TBL] [Abstract][Full Text] [Related]
8. Adipose tissue compensates for defect of phosphatidylinositol 3'-kinase induced in liver and muscle by dietary fish oil in fed rats. Corporeau C; Foll CL; Taouis M; Gouygou JP; Bergé JP; Delarue J Am J Physiol Endocrinol Metab; 2006 Jan; 290(1):E78-E86. PubMed ID: 16339925 [TBL] [Abstract][Full Text] [Related]
9. Temporal and dietary fat content-dependent islet adaptation to high-fat feeding-induced glucose intolerance in mice. Winzell MS; Magnusson C; Ahrén B Metabolism; 2007 Jan; 56(1):122-8. PubMed ID: 17161234 [TBL] [Abstract][Full Text] [Related]
10. Adipose cellularity, serum glucose, insulin and cholesterol in polygenic obese mice fed high-fat or high-carbohydrate diets. Robeson BL; Eisen EJ; Leatherwood JM Growth; 1981; 45(3):198-215. PubMed ID: 7030875 [TBL] [Abstract][Full Text] [Related]
11. Lipid peroxidation is not a prerequisite for the development of obesity and diabetes in high-fat-fed mice. Sohet FM; Neyrinck AM; Dewulf EM; Bindels LB; Portois L; Malaisse WJ; Carpentier YA; Cani PD; Delzenne NM Br J Nutr; 2009 Aug; 102(3):462-9. PubMed ID: 19161640 [TBL] [Abstract][Full Text] [Related]
13. Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Lee MS; Kim CT; Kim Y Ann Nutr Metab; 2009; 54(2):151-7. PubMed ID: 19390166 [TBL] [Abstract][Full Text] [Related]
14. Reduced adiposity and improved insulin sensitivity in obese mice with antisense suppression of 4E-BP2 expression. Yu XX; Pandey SK; Booten SL; Murray SF; Monia BP; Bhanot S Am J Physiol Endocrinol Metab; 2008 Mar; 294(3):E530-9. PubMed ID: 18198353 [TBL] [Abstract][Full Text] [Related]
15. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422 [TBL] [Abstract][Full Text] [Related]
16. High fat and highly thermolyzed fat diets promote insulin resistance and increase DNA damage in rats. de Assis AM; Rieger DK; Longoni A; Battu C; Raymundi S; da Rocha RF; Andreazza AC; Farina M; Rotta LN; Gottfried C; Gonçalves CA; Moreira JC; Perry ML Exp Biol Med (Maywood); 2009 Nov; 234(11):1296-304. PubMed ID: 19855071 [TBL] [Abstract][Full Text] [Related]
17. Altered expression of transcription factors and genes regulating lipogenesis in liver and adipose tissue of mice with high fat diet-induced obesity and nonalcoholic fatty liver disease. Morgan K; Uyuni A; Nandgiri G; Mao L; Castaneda L; Kathirvel E; French SW; Morgan TR Eur J Gastroenterol Hepatol; 2008 Sep; 20(9):843-54. PubMed ID: 18794597 [TBL] [Abstract][Full Text] [Related]
18. [Behavior of back fat thickness, the activity of NADP-dependent dehydrogenases from adipose tissue and adipose tissue constituents fat and protein and their evidence for energy metabolism in dairy cows]. Staufenbiel R; Langhans J; Rossow N; Leuthold G Arch Exp Veterinarmed; 1989 Nov; 43(6):885-95. PubMed ID: 2619489 [TBL] [Abstract][Full Text] [Related]
19. Analysis of lines of mice selected for fat content. 3. Flux through the de novo lipid synthesis pathway. Asante EA; Hill WG; Bulfield G Genet Res; 1991 Oct; 58(2):123-7. PubMed ID: 1765261 [TBL] [Abstract][Full Text] [Related]
20. Selection for different growth parameters in laboratory mice and its correlated effects on body composition and organ weights. Bünger L; Remus N; Roschlau D Nahrung; 1985; 29(6):549-60. PubMed ID: 4033741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]