These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 35406844)
1. Redox and Hormonal Changes in the Transcriptome of Grape ( Pogány M; Dankó T; Hegyi-Kaló J; Kámán-Tóth E; Szám DR; Hamow KÁ; Kalapos B; Kiss L; Fodor J; Gullner G; Váczy KZ; Barna B Plants (Basel); 2022 Mar; 11(7):. PubMed ID: 35406844 [TBL] [Abstract][Full Text] [Related]
2. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related]
3. Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Lovato A; Zenoni S; Tornielli GB; Colombo T; Vandelle E; Polverari A Data Brief; 2019 Aug; 25():104150. PubMed ID: 31304217 [TBL] [Abstract][Full Text] [Related]
4. Váczy KZ; Otto M; Gomba-Tóth A; Geiger A; Golen R; Hegyi-Kaló J; Cels T; Geml J; Zsófi Z; Hegyi ÁI Front Plant Sci; 2024; 15():1433161. PubMed ID: 39166245 [TBL] [Abstract][Full Text] [Related]
5. Botrytis cinerea expression profile and metabolism differs between noble and grey rot of grapes. Otto M; Geml J; Hegyi ÁI; Hegyi-Kaló J; Pierneef R; Pogány M; Kun J; Gyenesei A; Váczy KZ Food Microbiol; 2022 Sep; 106():104037. PubMed ID: 35690441 [TBL] [Abstract][Full Text] [Related]
6. The Induction of Noble Rot ( Negri S; Lovato A; Boscaini F; Salvetti E; Torriani S; Commisso M; Danzi R; Ugliano M; Polverari A; Tornielli GB; Guzzo F Front Plant Sci; 2017; 8():1002. PubMed ID: 28680428 [TBL] [Abstract][Full Text] [Related]
8. Filamentous fungi associated with natural infection of noble rot on withered grapes. Lorenzini M; Simonato B; Favati F; Bernardi P; Sbarbati A; Zapparoli G Int J Food Microbiol; 2018 May; 272():83-86. PubMed ID: 29550687 [TBL] [Abstract][Full Text] [Related]
9. Towards Sensor-Based Phenotyping of Physical Barriers of Grapes to Improve Resilience to Herzog K; Schwander F; Kassemeyer HH; Bieler E; Dürrenberger M; Trapp O; Töpfer R Front Plant Sci; 2021; 12():808365. PubMed ID: 35222454 [No Abstract] [Full Text] [Related]
10. Development of a qPCR method for classification of botrytized grape berries originated from Tokaj wine region. Belák Á; Kovács M; Ittzés A; Pomázi A Food Microbiol; 2024 Oct; 123():104582. PubMed ID: 39038888 [TBL] [Abstract][Full Text] [Related]
11. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults. Steel CC; Blackman JW; Schmidtke LM J Agric Food Chem; 2013 Jun; 61(22):5189-206. PubMed ID: 23675852 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955 [TBL] [Abstract][Full Text] [Related]
13. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697 [TBL] [Abstract][Full Text] [Related]
14. Destructive and non-destructive early detection of postharvest noble rot (Botrytis cinerea) in wine grapes aimed at producing high-quality wines. Modesti M; Alfieri G; Chieffo C; Mencarelli F; Vannini A; Catalani A; Chilosi G; Bellincontro A J Sci Food Agric; 2024 Mar; 104(4):2314-2325. PubMed ID: 37950679 [TBL] [Abstract][Full Text] [Related]
15. Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes. Lorenzini M; Azzolini M; Tosi E; Zapparoli G J Appl Microbiol; 2013 Mar; 114(3):762-70. PubMed ID: 23163324 [TBL] [Abstract][Full Text] [Related]
16. Mechanical Leaf Removal for Improved Botrytis Bunch Rot Control in Hed B; Centinari M Plant Dis; 2024 Oct; 108(10):3156-3162. PubMed ID: 38902880 [TBL] [Abstract][Full Text] [Related]
17. Metatranscriptomic Analyses Reveal the Functional Role of Hegyi ÁI; Otto M; Geml J; Hegyi-Kaló J; Kun J; Gyenesei A; Pierneef R; Váczy KZ J Fungi (Basel); 2022 Apr; 8(4):. PubMed ID: 35448609 [No Abstract] [Full Text] [Related]
18. Identification of potential protein markers of noble rot infected grapes. Lorenzini M; Millioni R; Franchin C; Zapparoli G; Arrigoni G; Simonato B Food Chem; 2015 Jul; 179():170-4. PubMed ID: 25722151 [TBL] [Abstract][Full Text] [Related]
19. Quantification of Si Ammour M; Fedele G; Morcia C; Terzi V; Rossi V Phytopathology; 2019 Jul; 109(7):1312-1319. PubMed ID: 30785375 [TBL] [Abstract][Full Text] [Related]
20. The microbial ecology of wine grape berries. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]