These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 3540685)
1. A new way of enhancing the thermostability of proteases. Imanaka T; Shibazaki M; Takagi M Nature; 1986 Dec 18-31; 324(6098):695-7. PubMed ID: 3540685 [TBL] [Abstract][Full Text] [Related]
2. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804 [TBL] [Abstract][Full Text] [Related]
3. Sequence regions of Bacilli metalloproteinases that can affect enzyme thermostability. Strongin A; Kostrov S; Kaydalova N Protein Seq Data Anal; 1991 Dec; 4(6):355-61. PubMed ID: 1812491 [TBL] [Abstract][Full Text] [Related]
4. Effects of changing the interaction between subdomains on the thermostability of Bacillus neutral proteases. Eijsink VG; Vriend G; van der Vinne B; Hazes B; van den Burg B; Venema G Proteins; 1992 Oct; 14(2):224-36. PubMed ID: 1409570 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of the aspartame precursor synthetic activity of an organic solvent-stable protease. Ogino H; Tsuchiyama S; Yasuda M; Doukyu N Protein Eng Des Sel; 2010 Mar; 23(3):147-52. PubMed ID: 20083492 [TBL] [Abstract][Full Text] [Related]
6. The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease. Bian Y; Liang X; Fang N; Tang XF; Tang B; Shen P; Peng Z FEBS Lett; 2006 Oct; 580(25):6007-14. PubMed ID: 17052711 [TBL] [Abstract][Full Text] [Related]
7. Two exposed amino acid residues confer thermostability on a cold shock protein. Perl D; Mueller U; Heinemann U; Schmid FX Nat Struct Biol; 2000 May; 7(5):380-3. PubMed ID: 10802734 [TBL] [Abstract][Full Text] [Related]
8. Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution. Smith CA; Toogood HS; Baker HM; Daniel RM; Baker EN J Mol Biol; 1999 Dec; 294(4):1027-40. PubMed ID: 10588904 [TBL] [Abstract][Full Text] [Related]
9. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. Thompson MJ; Eisenberg D J Mol Biol; 1999 Jul; 290(2):595-604. PubMed ID: 10390356 [TBL] [Abstract][Full Text] [Related]
10. Cumulative effect of intragenic amino-acid replacements on the thermostability of a protein. Matsumura M; Yasumura S; Aiba S Nature; 1986 Sep 25-Oct 1; 323(6086):356-8. PubMed ID: 3020429 [TBL] [Abstract][Full Text] [Related]
11. A combined approach of mass spectrometry, molecular modeling, and site-directed mutagenesis highlights key structural features responsible for the thermostability of Sulfolobus solfataricus carboxypeptidase. Sommaruga S; De Palma A; Mauri PL; Trisciani M; Basilico F; Martelli PL; Casadio R; Tortora P; Occhipinti E Proteins; 2008 Jun; 71(4):1843-52. PubMed ID: 18175312 [TBL] [Abstract][Full Text] [Related]
12. Improvement of Bacillus circulans beta-amylase activity attained using the ancestral mutation method. Yamashiro K; Yokobori S; Koikeda S; Yamagishi A Protein Eng Des Sel; 2010 Jul; 23(7):519-28. PubMed ID: 20406825 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of E. coli Ribonuclease HI by the 'stability profile of mutant protein' (SPMP)-inspired random and non-random mutagenesis. Haruki M; Saito Y; Ota M; Nishikawa K; Kanaya S J Biotechnol; 2006 Jul; 124(3):512-22. PubMed ID: 16545882 [TBL] [Abstract][Full Text] [Related]
14. Remarkable improvements of a neutral protease activity and stability share the same structural origins. Asghari SM; Pazhang M; Ehtesham S; Karbalaei-Heidari HR; Taghdir M; Sadeghizadeh M; Naderi-Manesh H; Khajeh K Protein Eng Des Sel; 2010 Aug; 23(8):599-606. PubMed ID: 20513706 [TBL] [Abstract][Full Text] [Related]
15. Mutations of barley beta-amylase that improve substrate-binding affinity and thermostability. Ma YF; Evans DE; Logue SJ; Langridge P Mol Genet Genomics; 2001 Nov; 266(3):345-52. PubMed ID: 11713664 [TBL] [Abstract][Full Text] [Related]
16. Directed evolution study of temperature adaptation in a psychrophilic enzyme. Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234 [TBL] [Abstract][Full Text] [Related]
17. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability. Christodoulou E; Rypniewski WR; Vorgias CR Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263 [TBL] [Abstract][Full Text] [Related]
18. Glycine-15 in the bend between two alpha-helices can explain the thermostability of DNA binding protein HU from Bacillus stearothermophilus. Kawamura S; Kakuta Y; Tanaka I; Hikichi K; Kuhara S; Yamasaki N; Kimura M Biochemistry; 1996 Jan; 35(4):1195-200. PubMed ID: 8573574 [TBL] [Abstract][Full Text] [Related]
19. In vivo molecular evolution reveals biophysical origins of organismal fitness. Couñago R; Chen S; Shamoo Y Mol Cell; 2006 May; 22(4):441-9. PubMed ID: 16713575 [TBL] [Abstract][Full Text] [Related]
20. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability. Chen J; Lu Z; Sakon J; Stites WE J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]