BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35407162)

  • 1. Near-Interface Defects in Graphene/H-BN In-Plane Heterostructures: Insights into the Interfacial Thermal Transport.
    Zhang N; Zhou B; Li D; Qi D; Wu Y; Zheng H; Yang B
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological Defects at the Graphene/h-BN interface Abnormally Enhance Its Thermal Conductance.
    Liu X; Zhang G; Zhang YW
    Nano Lett; 2016 Aug; 16(8):4954-9. PubMed ID: 27387848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Yang Y; Ma J; Yang J; Zhang Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45742-45751. PubMed ID: 36172714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures.
    Yan Z; Chen L; Yoon M; Kumar S
    Nanoscale; 2016 Feb; 8(7):4037-46. PubMed ID: 26817419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction and Control of Thermal Transport at Defective State Gr/
    Zhou M; Liu L; Liu J; Mei Z
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon Thermal Transport across Multilayer Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Wu X; Han Q
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32564-32578. PubMed ID: 34196535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Conductance of the 2D MoS
    Liu Y; Ong ZY; Wu J; Zhao Y; Watanabe K; Taniguchi T; Chi D; Zhang G; Thong JT; Qiu CW; Hippalgaonkar K
    Sci Rep; 2017 Mar; 7():43886. PubMed ID: 28262778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defects in Graphene/h-BN Planar Heterostructures: Insights into the Interfacial Thermal Transport Properties.
    Yao W; Fan L
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of thermal energy transport across the graphene/h-BN heterostructure interface.
    Liu F; Zou R; Hu N; Ning H; Yan C; Liu Y; Wu L; Mo F; Fu S
    Nanoscale; 2019 Mar; 11(9):4067-4072. PubMed ID: 30778431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of strain and defects on the thermal conductance of the graphene/hexagonal boron nitride interface.
    Song J; Xu Z; He X; Cai C; Bai Y; Miao L; Wang R
    Phys Chem Chem Phys; 2020 May; 22(20):11537-11545. PubMed ID: 32393941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-based SiC Van der Waals heterostructures: nonequilibrium molecular dynamics simulation study.
    Zanane FZ; Sadki K; Drissi LB; Saidi EH
    J Mol Model; 2022 Mar; 28(4):88. PubMed ID: 35267102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Transport of AlN/Graphene/3C-SiC Typical Heterostructures with Different Crystallinities of Graphene.
    Yang B; Peng C; Song M; Tang Y; Wu Y; Wu X; Zheng H
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2384-2395. PubMed ID: 36539985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal transport of graphene-C
    Zhang G; Dong S; Wang X; Xin G
    Nanotechnology; 2023 Nov; 35(5):. PubMed ID: 37879323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene and 2D Hexagonal Boron Nitride Heterostructure for Thermal Management in Actively Tunable Manner.
    Sun H; Jiang Y; Hua R; Huang R; Shi L; Dong Y; Liang S; Ni J; Zhang C; Dong R; Song Y
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces.
    Lin S; Buehler MJ
    Nanotechnology; 2013 Apr; 24(16):165702. PubMed ID: 23535514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexagonal Boron Nitride-Graphene Heterostructures: Synthesis and Interfacial Properties.
    Li Q; Liu M; Zhang Y; Liu Z
    Small; 2016 Jan; 12(1):32-50. PubMed ID: 26439677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and thermal properties of grain boundary in a planar heterostructure of graphene and hexagonal boron nitride.
    Li Y; Wei A; Ye H; Yao H
    Nanoscale; 2018 Feb; 10(7):3497-3508. PubMed ID: 29404556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet.
    Hong Y; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2016 Sep; 18(35):24164-70. PubMed ID: 27531348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.