These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 35407167)
1. Size- and Oxidation-Dependent Toxicity of Graphene Oxide Nanomaterials in Embryonic Zebrafish. Lopez RM; White JR; Truong L; Tanguay RL Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407167 [TBL] [Abstract][Full Text] [Related]
2. Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos. Liu XT; Mu XY; Wu XL; Meng LX; Guan WB; Ma YQ; Sun H; Wang CJ; Li XF Biomed Environ Sci; 2014 Sep; 27(9):676-83. PubMed ID: 25256857 [TBL] [Abstract][Full Text] [Related]
3. Effect of graphene-based nanomaterials on corneal wound healing in vitro. Fukuto A; Kang J; Gates BL; Sannajust K; Pinkerton KE; Van Winkle LS; Kiuchi Y; Leonard BC; Thomasy SM Exp Eye Res; 2023 Apr; 229():109419. PubMed ID: 36806671 [TBL] [Abstract][Full Text] [Related]
4. Biotransformations and cytotoxicity of eleven graphene and inorganic two-dimensional nanomaterials using simulated digestions coupled with a triculture in vitro model of the human gastrointestinal epithelium. Bazina L; Bitounis D; Cao X; DeLoid GM; Parviz D; Strano MS; Greg Lin HY; Bell DC; Thrall BD; Demokritou P Environ Sci Nano; 2021 Nov; 8(11):3233-3249. PubMed ID: 37465590 [TBL] [Abstract][Full Text] [Related]
5. Production of Reduced Graphene Oxide by Using Three Different Microorganisms and Investigation of Their Cell Interactions. Utkan G; Yumusak G; Tunali BC; Ozturk T; Turk M ACS Omega; 2023 Aug; 8(34):31188-31200. PubMed ID: 37663476 [TBL] [Abstract][Full Text] [Related]
6. Toxic effects of different-sized graphene oxide particles on zebrafish embryonic development. Chen Z; Yu C; Khan IA; Tang Y; Liu S; Yang M Ecotoxicol Environ Saf; 2020 Jul; 197():110608. PubMed ID: 32305822 [TBL] [Abstract][Full Text] [Related]
7. Graphene Oxides (GOs) with Different Lateral Dimensions and Thicknesses Affect the Molecular Response in Martin-Folgar R; Esteban-Arranz A; Negri V; Morales M Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985861 [TBL] [Abstract][Full Text] [Related]
8. Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun N-terminal kinases. Lim MH; Jeung IC; Jeong J; Yoon SJ; Lee SH; Park J; Kang YS; Lee H; Park YJ; Lee HG; Lee SJ; Han BS; Song NW; Lee SC; Kim JS; Bae KH; Min JK Acta Biomater; 2016 Dec; 46():191-203. PubMed ID: 27640918 [TBL] [Abstract][Full Text] [Related]
10. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro. Katsumiti A; Tomovska R; Cajaraville MP Aquat Toxicol; 2017 Jul; 188():138-147. PubMed ID: 28521151 [TBL] [Abstract][Full Text] [Related]
11. Differences in toxicity and accumulation of metal from copper oxide nanomaterials compared to copper sulphate in zebrafish embryos: Delayed hatching, the chorion barrier and physiological effects. Pereira SPP; Boyle D; Nogueira A; Handy RD Ecotoxicol Environ Saf; 2023 Mar; 253():114613. PubMed ID: 36796205 [TBL] [Abstract][Full Text] [Related]
12. Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. Wu Y; Wang F; Wang S; Ma J; Xu M; Gao M; Liu R; Chen W; Liu S Nanoscale; 2018 Aug; 10(30):14637-14650. PubMed ID: 30028471 [TBL] [Abstract][Full Text] [Related]
13. Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Jia PP; Sun T; Junaid M; Yang L; Ma YB; Cui ZS; Wei DP; Shi HF; Pei DS Environ Pollut; 2019 Apr; 247():595-606. PubMed ID: 30708322 [TBL] [Abstract][Full Text] [Related]
14. High throughput embryonic zebrafish test with automated dechorionation to evaluate nanomaterial toxicity. Carbaugh CM; van der Schalie WH; Widder MW PLoS One; 2022; 17(9):e0274011. PubMed ID: 36112591 [TBL] [Abstract][Full Text] [Related]
15. The toxicity of graphene oxides: dependence on the oxidative methods used. Chng EL; Pumera M Chemistry; 2013 Jun; 19(25):8227-35. PubMed ID: 23630053 [TBL] [Abstract][Full Text] [Related]
16. New insight into the biocompatibility/toxicity of graphene oxides and their reduced forms on Chlamydomonas reinhardtii. Bytešníková Z; Koláčková M; Dobešová M; Švec P; Ridošková A; Pekárková J; Přibyl J; Cápal P; Húska D; Adam V; Richtera L NanoImpact; 2023 Jul; 31():100468. PubMed ID: 37209721 [TBL] [Abstract][Full Text] [Related]
17. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites. Ha HW; Choudhury A; Kamal T; Kim DH; Park SY ACS Appl Mater Interfaces; 2012 Sep; 4(9):4623-30. PubMed ID: 22928645 [TBL] [Abstract][Full Text] [Related]
18. Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells. Zhang W; Yan L; Li M; Zhao R; Yang X; Ji T; Gu Z; Yin JJ; Gao X; Nie G Toxicol Lett; 2015 Sep; 237(2):61-71. PubMed ID: 26047786 [TBL] [Abstract][Full Text] [Related]
19. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO). Chatterjee N; Kim Y; Yang J; Roca CP; Joo SW; Choi J Nanotoxicology; 2017 Feb; 11(1):76-86. PubMed ID: 27901397 [TBL] [Abstract][Full Text] [Related]