These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35407182)

  • 1. A Green and Facile Microvia Filling Method via Printing and Sintering of Cu-Ag Core-Shell Nano-Microparticles.
    Yang G; Luo S; Lai T; Lai H; Luo B; Li Z; Zhang Y; Cui C
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Cu@Ag Micro/Nanoparticle Hybrid Paste and Its Rapid Sintering Technique via Electromagnetic Induction for High-Power Electronics.
    Wu Z; Liu W; Feng J; Wen Z; Zhang X; Wang X; Wang C; Tian Y
    ACS Omega; 2023 Aug; 8(34):31021-31029. PubMed ID: 37663465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver Shell Thickness-Dependent Conductivity of Coatings Based on Ni@Ag Core@shell Nanoparticles.
    Pajor-Świerzy A; Kozak K; Duraczyńska D; Wiertel-Pochopień A; Zawała J; Szczepanowicz K
    Nanotechnol Sci Appl; 2023; 16():73-84. PubMed ID: 38161487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging.
    Ji H; Zhou J; Liang M; Lu H; Li M
    Ultrason Sonochem; 2018 Mar; 41():375-381. PubMed ID: 29137764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Preparation of Monodisperse Cu@Ag Core-Shell Nanoparticles for Conductive Ink in Printing Electronics.
    Li G; Yu X; Zhang R; Ouyang Q; Sun R; Cao L; Zhu P
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Filling of Microvia by Pre-Settling Particles and Following Cu Electroplating.
    Li G; Li Z; Li J; Wu H
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.
    Lee C; Kim NR; Koo J; Lee YJ; Lee HM
    Nanotechnology; 2015 Nov; 26(45):455601. PubMed ID: 26489391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printable and Flexible Copper-Silver Alloy Electrodes with High Conductivity and Ultrahigh Oxidation Resistance.
    Li W; Hu D; Li L; Li CF; Jiu J; Chen C; Ishina T; Sugahara T; Suganuma K
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24711-24721. PubMed ID: 28675295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductivity enhancement of Ag nanowire ink by decorating
    Feng J; Xing B; Xu J
    Nanotechnology; 2024 Feb; 35(17):. PubMed ID: 38262038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution.
    Ding J; Liu J; Tian Q; Wu Z; Yao W; Dai Z; Liu L; Wu W
    Nanoscale Res Lett; 2016 Dec; 11(1):412. PubMed ID: 27644238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.
    Joo SJ; Hwang HJ; Kim HS
    Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical and electrochemical migration characteristics of Ag/Cu nanopaste patterns.
    Koh M; Kim KS; Park BG; Jung KH; Lee CS; Choa YH; Jeong MY; Jung SB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):8915-9. PubMed ID: 25970981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of conductive silver paste using bimodal particles.
    Han HG; Seo DS; Lee JK
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5576-80. PubMed ID: 19198502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films.
    Pajor-Świerzy A; Socha R; Pawłowski R; Warszyński P; Szczepanowicz K
    Nanotechnology; 2019 May; 30(22):225301. PubMed ID: 30721883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of fully covered Cu-Ag core-shell nanoparticles by compound method and anti-oxidation performance.
    Huang Y; Wu F; Zhou Z; Zhou L; Liu H
    Nanotechnology; 2020 Apr; 31(17):175601. PubMed ID: 31910401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simple Route to Synthesize Cu@Ag Core-Shell Bimetallic Nanoparticles and Their Surface-Enhanced Raman Scattering Properties.
    Jin X; Mao A; Ding M; Ding P; Zhang T; Gu X; Xiao W; Yuan J
    Appl Spectrosc; 2016 Oct; 70(10):1692-1699. PubMed ID: 30208721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polydispersity vs. Monodispersity. How the Properties of Ni-Ag Core-Shell Nanoparticles Affect the Conductivity of Ink Coatings.
    Pajor-Świerzy A; Staśko D; Pawłowski R; Mordarski G; Kamyshny A; Szczepanowicz K
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes.
    Yu MH; Joo SJ; Kim HS
    Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing of highly conductive silver architectures enabled to sinter at low temperatures.
    Kim JH; Lee S; Wajahat M; Ahn J; Pyo J; Chang WS; Seol SK
    Nanoscale; 2019 Oct; 11(38):17682-17688. PubMed ID: 31539002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epoxy-Based Copper (Cu) Sintering Pastes for Enhanced Bonding Strength and Preventing Cu Oxidation after Sintering.
    Han SJ; Lee S; Jang KS
    Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.