These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35407230)

  • 1. Theoretical Analysis of Terahertz Frequency Multiplier Based on Semiconductor Superlattices.
    Feng W; Wei S; Zheng Y; Wang C; Cao J
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field.
    Wang C; Wang F; Cao JC
    Chaos; 2014 Sep; 24(3):033109. PubMed ID: 25273189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rectification of terahertz radiation in semiconductor superlattices in the absence of domains.
    Isohätälä J; Alekseev KN
    J Phys Condens Matter; 2012 Apr; 24(14):145303. PubMed ID: 22417810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coexistence of Bloch and Parametric Mechanisms of High-Frequency Gain in Doped Superlattices.
    Čižas V; Alexeeva N; Alekseev KN; Valušis G
    Nanomaterials (Basel); 2023 Jul; 13(13):. PubMed ID: 37446509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz conductivity and possible BLOCH gain in semiconductor superlattices.
    Shimada Y; Hirakawa K; Odnoblioudov M; Chao KA
    Phys Rev Lett; 2003 Jan; 90(4):046806. PubMed ID: 12570445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harmonic Generation in Biased Semiconductor Superlattices.
    Pereira MF
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The intensive terahertz electroluminescence induced by Bloch oscillations in SiC natural superlattices.
    Sankin V; Andrianov A; Petrov A; Zakhar'in A; Lepneva A; Shkrebiy P
    Nanoscale Res Lett; 2012 Oct; 7(1):560. PubMed ID: 23043773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model of the influence of an external magnetic field on the gain of terahertz radiation from semiconductor superlattices.
    Hyart T; Mattas J; Alekseev KN
    Phys Rev Lett; 2009 Sep; 103(11):117401. PubMed ID: 19792399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Milliwatt terahertz harmonic generation from topological insulator metamaterials.
    Tielrooij KJ; Principi A; Reig DS; Block A; Varghese S; Schreyeck S; Brunner K; Karczewski G; Ilyakov I; Ponomaryov O; de Oliveira TVAG; Chen M; Deinert JC; Carbonell CG; Valenzuela SO; Molenkamp LW; Kiessling T; Astakhov GV; Kovalev S
    Light Sci Appl; 2022 Nov; 11(1):315. PubMed ID: 36316317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant crossover of terahertz loss to the gain of a Bloch oscillating InAs/AlSb superlattice.
    Savvidis PG; Kolasa B; Lee G; Allen SJ
    Phys Rev Lett; 2004 May; 92(19):196802. PubMed ID: 15169430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersive terahertz gain of a nonclassical oscillator: BLOCH oscillation in semiconductor superlattices.
    Sekine N; Hirakawa K
    Phys Rev Lett; 2005 Feb; 94(5):057408. PubMed ID: 15783699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined Structural and Voltage Control of Giant Nonlinearities in Semiconductor Superlattices.
    Pereira MF; Apostolakis A
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diamond for High-Power, High-Frequency, and Terahertz Plasma Wave Electronics.
    Hasan MM; Wang C; Pala N; Shur M
    Nanomaterials (Basel); 2024 Mar; 14(5):. PubMed ID: 38470789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiconductor superlattices: a tool for terahertz acoustics.
    Huynh A; Perrin B; Lemaître A
    Ultrasonics; 2015 Feb; 56():66-79. PubMed ID: 25163800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled bloch-phonon oscillations in semiconductor superlattices.
    Dekorsy T; Bartels A; Kurz H; Kohler K; Hey R; Ploog K
    Phys Rev Lett; 2000 Jul; 85(5):1080-3. PubMed ID: 10991479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions.
    Hafez HA; Kovalev S; Deinert JC; Mics Z; Green B; Awari N; Chen M; Germanskiy S; Lehnert U; Teichert J; Wang Z; Tielrooij KJ; Liu Z; Chen Z; Narita A; Müllen K; Bonn M; Gensch M; Turchinovich D
    Nature; 2018 Sep; 561(7724):507-511. PubMed ID: 30202091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field.
    Balanov AG; Fowler D; Patanè A; Eaves L; Fromhold TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026209. PubMed ID: 18352105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of stochastic webs on chaotic electron transport in semiconductor superlattices.
    Fromhold TM; Krokhin AA; Tench CR; Bujkiewicz S; Wilkinson PB; Sheard FW; Eaves L
    Phys Rev Lett; 2001 Jul; 87(4):046803. PubMed ID: 11461635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissipative Parametric Gain in a GaAs/AlGaAs Superlattice.
    Čižas V; Subačius L; Alexeeva NV; Seliuta D; Hyart T; Köhler K; Alekseev KN; Valušis G
    Phys Rev Lett; 2022 Jun; 128(23):236802. PubMed ID: 35749173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-perturbative terahertz high-harmonic generation in the three-dimensional Dirac semimetal Cd
    Kovalev S; Dantas RMA; Germanskiy S; Deinert JC; Green B; Ilyakov I; Awari N; Chen M; Bawatna M; Ling J; Xiu F; van Loosdrecht PHM; Surówka P; Oka T; Wang Z
    Nat Commun; 2020 May; 11(1):2451. PubMed ID: 32415119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.